Multiple solutions for nonhomogeneous Schrodinger-Maxwell and Klein- Gordon-Maxwell equations on R 3

被引:35
作者
Chen, Shang-Jie [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 05期
基金
中国国家自然科学基金;
关键词
Schrodinger-Maxwell equations; Klein-Gordon-Maxwell equations; Nonhomogeneous; Superlinear; Ekeland's variational principle; Mountain Pass Theorem; Variational methods; SOLITARY WAVES; POSITIVE SOLUTIONS; POISSON EQUATIONS; GROUND-STATE; EXISTENCE; SYSTEM; NONEXISTENCE; FIELD; R-3;
D O I
10.1007/s00030-010-0068-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following nonhomogeneous Schrodinger-Maxwell equations {-Delta u + V(x)u + phi u = f(x, u) + h(x), in R-3, -Delta phi = u(2), in R-3, where f satisfies the Ambrosetti-Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Similar results for the nonhomogeneous Klein-Gordon-Maxwell equations {-Delta u + [m(2) - (omega + phi)(2)]u = vertical bar mu vertical bar(q-2)u + h(x), in R-3, {-Delta phi + phi mu(2) = -omega mu(2), in R-3, are also obtained when 2 < q < 6.
引用
收藏
页码:559 / 574
页数:16
相关论文
共 50 条
[41]   MULTIPLICITY OF SOLUTIONS FOR THE NONLINEAR SCHRODINGER-MAXWELL SYSTEM [J].
Fang, Yanqin ;
Zhang, Jihui .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) :1267-1279
[42]   Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell System [J].
Li, Lin ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 110 :157-169
[43]   Solutions to the critical Klein-Gordon-Maxwell system with external potential [J].
Zhang, Jian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) :1152-1177
[44]   Klein-Gordon-Maxwell Equations Driven by Mixed Local-Nonlocal Operators [J].
Cangiotti, Nicolo ;
Caponi, Maicol ;
Maione, Alberto ;
Vitillaro, Enzo .
MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) :375-403
[45]   MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRODINGER-POISSON EQUATIONS WITH SIGN-CHANGING POTENTIAL [J].
Wang, Lixia ;
Ma, Shiwang ;
Xu, Na .
ACTA MATHEMATICA SCIENTIA, 2017, 37 (02) :555-572
[46]   Hamiltonian formulation of the Klein-Gordon-Maxwell equations [J].
Benci, Vieri ;
Fortunato, Donato .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (02) :113-134
[47]   Multiple normalized solutions for Schrodinger-Maxwell equation with Sobolev critical exponent and mixed nonlinearities [J].
Kang, Jin-Cai ;
Li, Yong-Yong ;
Tang, Chun-Lei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 443
[48]   Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential [J].
Gan, Canlin ;
Xiao, Ting ;
Zhang, Qiongfen .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[49]   Multiple solutions for the nonhomogeneous Schrodinger-Poisson equations involving the fractional Laplacian [J].
Tong, Yanchun ;
Sun, Decai .
2018 17TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES), 2018, :335-338
[50]   Spinning Q-Balls for the Klein-Gordon-Maxwell Equations [J].
Benci, Vieri ;
Fortunato, Donato .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :639-668