Multiple solutions for nonhomogeneous Schrodinger-Maxwell and Klein- Gordon-Maxwell equations on R 3

被引:35
作者
Chen, Shang-Jie [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 05期
基金
中国国家自然科学基金;
关键词
Schrodinger-Maxwell equations; Klein-Gordon-Maxwell equations; Nonhomogeneous; Superlinear; Ekeland's variational principle; Mountain Pass Theorem; Variational methods; SOLITARY WAVES; POSITIVE SOLUTIONS; POISSON EQUATIONS; GROUND-STATE; EXISTENCE; SYSTEM; NONEXISTENCE; FIELD; R-3;
D O I
10.1007/s00030-010-0068-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following nonhomogeneous Schrodinger-Maxwell equations {-Delta u + V(x)u + phi u = f(x, u) + h(x), in R-3, -Delta phi = u(2), in R-3, where f satisfies the Ambrosetti-Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Similar results for the nonhomogeneous Klein-Gordon-Maxwell equations {-Delta u + [m(2) - (omega + phi)(2)]u = vertical bar mu vertical bar(q-2)u + h(x), in R-3, {-Delta phi + phi mu(2) = -omega mu(2), in R-3, are also obtained when 2 < q < 6.
引用
收藏
页码:559 / 574
页数:16
相关论文
共 50 条
[31]   Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell system with Berestycki-Lions conditions [J].
Wu, Xing-Ping ;
Liu, Xiao-Qi .
APPLIED MATHEMATICS LETTERS, 2023, 137
[32]   Multiple Solutions for the Klein-Gordon-Maxwell System with Steep Potential Well [J].
Liu, Xiao-qi ;
Tang, Chun-lei .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (01) :155-165
[33]   Generalized semi-local Klein-Gordon-Maxwell equations [J].
Sohn, Juhee .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (06)
[34]   A semilinear system of Schrodinger-Maxwell equations [J].
Boccardo, Lucio ;
Orsina, Luigi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
[35]   GROUND STATE SOLUTIONS FOR THE CRITICAL KLEIN-GORDON-MAXWELL SYSTEM [J].
Wang, Lixia ;
Wang, Xiaoming ;
Zhang, Luyu .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) :1451-1460
[36]   DECAY OF SOLUTIONS OF MAXWELL-KLEIN-GORDON EQUATIONS WITH ARBITRARY MAXWELL FIELD [J].
Yang, Shiwu .
ANALYSIS & PDE, 2016, 9 (08) :1829-1902
[37]   Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell System [J].
He, Xiaoming .
ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) :237-250
[38]   KLEIN-GORDON-MAXWELL EQUATIONS IN HIGH DIMENSIONS [J].
Thizy, Pierre-Damien .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (03) :1097-1125
[39]   Regularizing effect for a system of Schrodinger-Maxwell equations [J].
Boccardo, Lucio ;
Orsina, Luigi .
ADVANCES IN CALCULUS OF VARIATIONS, 2018, 11 (01) :75-87
[40]   Classification of nonnegative solutions to static Schrodinger-Hartree and Schrodinger-Maxwell equations with combined nonlinearities [J].
Dai, Wei ;
Liu, Zhao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)