Multiple solutions for nonhomogeneous Schrodinger-Maxwell and Klein- Gordon-Maxwell equations on R 3

被引:35
作者
Chen, Shang-Jie [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 05期
基金
中国国家自然科学基金;
关键词
Schrodinger-Maxwell equations; Klein-Gordon-Maxwell equations; Nonhomogeneous; Superlinear; Ekeland's variational principle; Mountain Pass Theorem; Variational methods; SOLITARY WAVES; POSITIVE SOLUTIONS; POISSON EQUATIONS; GROUND-STATE; EXISTENCE; SYSTEM; NONEXISTENCE; FIELD; R-3;
D O I
10.1007/s00030-010-0068-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following nonhomogeneous Schrodinger-Maxwell equations {-Delta u + V(x)u + phi u = f(x, u) + h(x), in R-3, -Delta phi = u(2), in R-3, where f satisfies the Ambrosetti-Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Similar results for the nonhomogeneous Klein-Gordon-Maxwell equations {-Delta u + [m(2) - (omega + phi)(2)]u = vertical bar mu vertical bar(q-2)u + h(x), in R-3, {-Delta phi + phi mu(2) = -omega mu(2), in R-3, are also obtained when 2 < q < 6.
引用
收藏
页码:559 / 574
页数:16
相关论文
共 50 条
[21]   Ground-State Solutions for Asymptotically Cubic Schrodinger-Maxwell Equations [J].
Huang, Wen-nian ;
Tang, X. H. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :3469-3481
[22]   MULTIPLE SOLUTIONS FOR SCHRODINGER-MAXWELL SYSTEMS WITH UNBOUNDED AND DECAYING RADIAL POTENTIALS [J].
Liao, Fangfang ;
Wang, Xiaoping ;
Liu, Zhigang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
[23]   NONRADIAL SOLUTIONS FOR THE KLEIN-GORDON-MAXWELL EQUATIONS [J].
Makita, Percy D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) :2271-2283
[24]   EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER-MAXWELL EQUATIONS [J].
Liu, Zhisu ;
Guo, Shangjiang ;
Zhang, Ziheng .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03) :857-872
[25]   Infinitely many solutions for Schrodinger-Maxwell equations with indefinite sign subquadratic potentials [J].
Chen, Peng ;
Tian, Cai .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :492-502
[26]   Multiplicity of solutions for a class of Schrodinger-Maxwell systems [J].
Duan, Shengzhong ;
Wu, Xian .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
[27]   ON THE EXISTENCE OF SOLUTIONS FOR SCHRODINGER-MAXWELL SYSTEMS IN R3 [J].
Yang, Minbo ;
Zhao, Fukun ;
Ding, Yanheng .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (05) :1655-1674
[28]   The Existence of Infinitely Many Solutions for the Nonlinear Schrodinger-Maxwell Equations [J].
Huang, Wen-nian ;
Tang, X. H. .
RESULTS IN MATHEMATICS, 2014, 65 (1-2) :223-234
[29]   Multiple solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on R3 [J].
Chen, Shang-Jie ;
Li, Lin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) :517-524
[30]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791