Multiple solutions for nonhomogeneous Schrodinger-Maxwell and Klein- Gordon-Maxwell equations on R 3

被引:35
作者
Chen, Shang-Jie [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 05期
基金
中国国家自然科学基金;
关键词
Schrodinger-Maxwell equations; Klein-Gordon-Maxwell equations; Nonhomogeneous; Superlinear; Ekeland's variational principle; Mountain Pass Theorem; Variational methods; SOLITARY WAVES; POSITIVE SOLUTIONS; POISSON EQUATIONS; GROUND-STATE; EXISTENCE; SYSTEM; NONEXISTENCE; FIELD; R-3;
D O I
10.1007/s00030-010-0068-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following nonhomogeneous Schrodinger-Maxwell equations {-Delta u + V(x)u + phi u = f(x, u) + h(x), in R-3, -Delta phi = u(2), in R-3, where f satisfies the Ambrosetti-Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Similar results for the nonhomogeneous Klein-Gordon-Maxwell equations {-Delta u + [m(2) - (omega + phi)(2)]u = vertical bar mu vertical bar(q-2)u + h(x), in R-3, {-Delta phi + phi mu(2) = -omega mu(2), in R-3, are also obtained when 2 < q < 6.
引用
收藏
页码:559 / 574
页数:16
相关论文
共 30 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[3]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[4]  
[Anonymous], 1989, APPL MATH SCI
[5]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[6]  
AZZOLLINI A, GROUND STATE SOLUTIO
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[8]   Solitons and the electromagnetic field [J].
Benci, V ;
Fortunato, D ;
Masiello, A ;
Pisani, L .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :73-102
[9]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[10]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072