Recent progress of biomass-derived carbon materials for supercapacitors

被引:343
作者
Wang, Jiashuai [1 ]
Zhang, Xiao [1 ]
Li, Zhe [1 ]
Ma, Yanqing [1 ,2 ]
Ma, Lei [1 ]
机构
[1] Tianjin Univ, Tianjin Int Ctr Nanoparticles & Narrosyst, Tianjin 300072, Peoples R China
[2] Tianjin Univ, State Lab Precis Measuring Technol & Instruments, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Supercapacitors; Structure-performance relationship; Theoretical prediction; HIERARCHICAL POROUS CARBON; ARTIFICIAL NEURAL-NETWORK; HIGH-SURFACE-AREA; PERFORMANCE ELECTRODE MATERIALS; ACTIVATED CARBON; OUTSTANDING SUPERCAPACITANCE; OXYGEN REDUCTION; HIGH-POWER; HYDROTHERMAL CARBONIZATION; MICROPOROUS CARBON;
D O I
10.1016/j.jpowsour.2020.227794
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The carbon material based biomass in energy storage has attracted much interest due to their environmental friendly, natural abundance and special porous structures. In this paper, the relationship between the species of biomass-based electrode and properties of supercapacitors are systematically discussed. On the one hand, the influence of the specific morphologies, heteroatom-introducing and graphitization degree of active carbon on the electrochemical properties are analyzed in detail, which give a promising direction for biomass-based carbon in clean energy field. On the other hand, machine learning, especially artificial neural network model, has been widely used as data mining technology to predict the electrochemical properties of electrode materials. It makes the structure-performance relationship for biomass-based supercapacitors more specifically. Current development in synthesis of active carbon from biomass combined with theoretical prediction is summarized, which provides a meaningful guidance into the application of energy storage supercapacitors. Current challenges and new trends on the biomass-based carbon materials in supercapacitors have also been proposed.
引用
收藏
页数:17
相关论文
共 184 条
[1]   A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil [J].
Abnisa, Faisal ;
Daud, Wan Mohd Ashri Wan .
ENERGY CONVERSION AND MANAGEMENT, 2014, 87 :71-85
[2]  
Arroyo J, 2016, CELL MICROBIOL, V18, P1239, DOI 10.1111/cmi.12615
[3]  
Arsène Marie-Ange, 2013, Mat. Res., V16, P903
[4]  
Bai Y., 2018, ADV MATER, V31
[5]   Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review [J].
Bi, Zhihong ;
Kong, Qingqiang ;
Cao, Yufang ;
Sun, Guohua ;
Su, Fangyuan ;
Wei, Xianxian ;
Li, Xiaoming ;
Ahmad, Aziz ;
Xie, Lijing ;
Chen, Cheng-Meng .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) :16028-16045
[6]   Wet Explosion: a Universal and Efficient Pretreatment Process for Lignocellulosic Biorefineries [J].
Biswas, Rajib ;
Uellendahl, Hinrich ;
Ahring, Birgitte K. .
BIOENERGY RESEARCH, 2015, 8 (03) :1101-1116
[7]   Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors [J].
Cai, Yijin ;
Luo, Ying ;
Dong, Hanwu ;
Zhao, Xiao ;
Xiao, Yong ;
Liang, Yeru ;
Hu, Hang ;
Liu, Yingliang ;
Zheng, Mingtao .
JOURNAL OF POWER SOURCES, 2017, 353 :260-269
[8]   Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes [J].
Chang, Jiuli ;
Gao, Zhiyong ;
Wang, Xiaorui ;
Wu, Dapeng ;
Xu, Fang ;
Wang, Xin ;
Guo, Yuming ;
Jiang, Kai .
ELECTROCHIMICA ACTA, 2015, 157 :290-298
[9]   Aging prediction and state of charge estimation of a LiFePO4 battery using input time-delayed neural networks [J].
Chaoui, Hicham ;
Ibe-Ekeocha, Chinemerem C. ;
Gualous, Hamid .
ELECTRIC POWER SYSTEMS RESEARCH, 2017, 146 :189-197
[10]   Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors [J].
Chen, Duo ;
Li, La ;
Xi, Yunlong ;
Li, Junzhi ;
Lu, Mengjie ;
Cao, Junming ;
Han, Wei .
ELECTROCHIMICA ACTA, 2018, 286 :264-270