Learning temporal correlations in biologically-inspired aVLSI

被引:0
|
作者
Bofill-i-Petit, A [1 ]
Murray, AF [1 ]
机构
[1] Univ Edinburgh, Dept Elect & Elect Engn, Edinburgh EH9 3JL, Midlothian, Scotland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporally-asymmetric Hebbian learning is a class of algorithms motivated by data from recent neurophysiology experiments. While traditional Hebbian learning rules use mean Pring rates to drive learning, this new form of learning involves precise Pring times. Hence, such algorithms can capture temporal spike correlations. We present circuits and methods to implement temporally-asymmetric Hebbian learning in analog VLSI. We also describe a small feed-forward 2 layer network that learns spike trains correlations. A chip including a single neuron and a network of adaptive spiking neurons has been fabricated in a CMOS 0.6mu process to validate the ideas presented.
引用
收藏
页码:817 / 820
页数:4
相关论文
共 50 条
  • [1] Biologically-inspired machine learning implemented to ecological informatics
    Park, Young-Seuk
    Chon, Tae-Soo
    ECOLOGICAL MODELLING, 2007, 203 (1-2) : 1 - 7
  • [2] Biologically-inspired visual landmark learning for mobile robots
    Bianco, G
    Cassinis, R
    ADVANCES IN ROBOT LEARNING, PROCEEDINGS, 2000, 1812 : 138 - 164
  • [3] Biologically-inspired adaptive learning: A near set approach
    Peters, James F.
    Shahfar, Shabnam
    Ramanna, Sheela
    Szturm, Tony
    PROCEEDINGS OF THE FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, 2007, : 403 - +
  • [4] Biologically-inspired Soft Exosuit
    Asbeck, Alan T.
    Dyer, Robert J.
    Larusson, Arnar F.
    Walsh, Conor J.
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2013,
  • [5] A Biologically-Inspired Nanoantenna Array
    Yusuf, Yazid
    Behdad, Nader
    2012 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2012,
  • [6] A BIOLOGICALLY-INSPIRED IMPROVED MAXNET
    YADIDPECHT, O
    GUR, M
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (03): : 757 - 759
  • [7] Biologically-Inspired Neuromorphic Computing
    Olin-Ammentorp, Wilkie
    Cady, Nathaniel
    SCIENCE PROGRESS, 2019, 102 (03) : 261 - 276
  • [8] A biologically-inspired MANET architecture
    Kershenbaum, Aaron
    Pappas, Vasilieos
    Lee, Kang-Won
    Lio, Pietro
    Sadler, Brian
    Verma, Dinesh
    DEFENSE TRANSFORMATION AND NET-CENTRIC SYSTEMS 2008, 2008, 6981
  • [9] Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks
    Lazebnik, Teddy
    Fleischer, Tzach
    Yaniv-Rosenfeld, Amit
    SUSTAINABILITY, 2023, 15 (14)
  • [10] Gender from Body: A Biologically-Inspired Approach with Manifold Learning
    Guo, Guodong
    Mu, Guowang
    Fu, Yun
    COMPUTER VISION - ACCV 2009, PT III, 2010, 5996 : 236 - +