Ant colony algorithm with Stackelberg game and multi-strategy fusion

被引:14
作者
Chen, Da [1 ]
You, XiaoMing [1 ]
Liu, Sheng [2 ]
机构
[1] Shanghai Univ Engn Sci, Coll Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Management, Shanghai 201620, Peoples R China
关键词
TSP problem; Multiple populations; Stackelberg game; Multi-strategy fusion; HYBRID GENETIC ALGORITHM; OPTIMIZATION; SYSTEM; MECHANISM;
D O I
10.1007/s10489-021-02774-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the disadvantages of the ant colony algorithm, such as slow convergence speed and easy to fall into local optimum, this paper proposes an ant colony algorithm with Stackelberg game and multi-strategy fusion. Firstly, Stackelberg game is established between ant colonies, and the population with the excellent performance is taken as the leader to increase the influence of excellent ant colony. Secondly, a multi-strategy fusion system is proposed, which is composed of three strategies: One is the pheromone fusion strategy, which selects the population whose entropy is less than the threshold value and the population with the highest similarity for pheromone fusion to increase the diversity of the algorithm. The second is the elite ant learning strategy, which speeds up the convergence rate by learning the elite ants of the elite population; The third is the pheromone recombination strategy, which helps the algorithm jump out of the local optimum. The simulation experiments of multiple cases in TSPLIB show that the improved algorithm balances diversity and the convergence speed, and effectively improves the quality of the solution.
引用
收藏
页码:6552 / 6574
页数:23
相关论文
共 48 条
[21]   A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman Problem [J].
Mahi, Mostafa ;
Baykan, Omer Kaan ;
Kodaz, Halife .
APPLIED SOFT COMPUTING, 2015, 30 :484-490
[22]  
Maiti, 2018, SWARM EVOL COMPUT
[23]  
Mirjalili S, 2019, STUD COMPUT INTELL, V780, P33, DOI 10.1007/978-3-319-93025-1_3
[24]   An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems [J].
Osaba, Eneko ;
Yang, Xin-She ;
Diaz, Fernando ;
Lopez-Garcia, Pedro ;
Carballedo, Roberto .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 48 :59-71
[25]   Repurposed Antiviral Drugs for Covid-19-Interim WHO Solidarity Trial Results [J].
Pan, Hongchao ;
Peto, Richard ;
Karim, Quarraisha Abdool ;
Alejandria, Marissa ;
Henao-Restrepo, Ana Maria ;
Garcia, Cesar Hernandez ;
Kieny, Marie Paule ;
Malekzadeh, Reza ;
Murthy, Srinivas ;
Preziosi, Marie-Pierre ;
Reddy, K. Srinath ;
Periago, Mirta Roses ;
Sathiyamoorthy, Vasee ;
Rottingen, John-Arne ;
Swaminathan, Soumya ;
Maggioni, Aldo ;
Babiker, Abdel ;
Cook, Deborah ;
Dondorp, Arjen ;
Kang, Gagandeep ;
Trelle, S. ;
McGinty, S. ;
Branca, M. ;
Appadoo, S. ;
Sterne, J. A. C. ;
Rogers, C. A. ;
Cappel-Porter, H. B. C. ;
Hutton, D. ;
Bellani, S. ;
Allum, E. ;
Kirwan, J. ;
Lydon, P. ;
Miranda-Montoya, M. C. ;
Salami, K. K. ;
Sathiyamoorthy, V. ;
Swaminathan, S. ;
Como, N. ;
Sinani, N. ;
Lopardo, G. ;
Periago, M. Roses ;
Nunes, E. P. ;
Reges, P. P. S. ;
Murthy, S. ;
Salvadori, M. ;
Alvarez-Moreno, C. A. ;
Rubio, M. L. Mesa ;
Hassany, M. ;
Zaid, H. ;
Tikkinen, K. A. O. ;
Perola, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (06) :497-511
[26]  
Shannon C. E., 1948, BELL SYST TECH J, V5, P3, DOI [DOI 10.1002/J.1538-7305.1948.TB01338.X, 10.1002/j.1538-7305.1948.tb01338.x, DOI 10.1002/J.1538-7305.1948.TB00917.X]
[28]   Implementing a GPU-based parallel MAX-MIN Ant System [J].
Skinderowicz, Rafal .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 106 :277-295
[29]   MAX-MIN Ant System [J].
Stützle, T ;
Hoos, HH .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2000, 16 (08) :889-914
[30]   Heterogenous Adaptive Ant Colony Optimization with 3-opt local search for the Travelling Salesman Problem [J].
Tuani, Ahamed Fayeez ;
Keedwell, Edward ;
Collett, Matthew .
APPLIED SOFT COMPUTING, 2020, 97