Bioferroelectricity in Nanostructured Glycine and Thymine: Molecular Modeling and Ferroelectric Properties at the Nanoscale

被引:19
作者
Bystrov, V. S. [1 ,2 ,3 ]
Seyedhosseini, E. [1 ,2 ]
Bdikin, I. [4 ]
Kopyl, S. [4 ]
Neumayer, S. M. [5 ,6 ]
Coutinho, J. [7 ]
Kholkin, A. L. [1 ,2 ]
机构
[1] Univ Aveiro, Dept Ceram & Mat Engn, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal
[3] Inst Math Problems Biol RAS, Pushchino 142290, Russia
[4] Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat, P-3810193 Aveiro, Portugal
[5] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
[6] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland
[7] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
关键词
Ferroelectrics; nanocrystals; thymine; piezoelectrics; glycine; molecular modeling; CRYSTAL-STRUCTURE; PIEZOELECTRIC PROPERTIES; SEMIEMPIRICAL METHODS; THERMODYNAMIC ASPECTS; GAMMA-GLYCINE; POLYMORPHISM; PROTEIN; OPTIMIZATION; TEMPERATURE; PARAMETERS;
D O I
10.1080/00150193.2015.995574
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanostructured aminoacid glycine and nucleobase thymine are very important for various biomedical applications. Experimentally, these structures demonstrate piezoelectric and polar properties. But the value of polarization and its switching behavior are not clear yet. In this work, computational modeling of glycine polymorphic phases (alpha and beta) and thymine nanostructures was performed using a combined method with LDA first principle calculations of atomic optimized crystal structures in AIMPRO code on Linux cluster combined with molecular semi-empirical PM3 calculations by HyperChem 8.0. The developed molecular model and calculated parameters are compared with recent measurements using piezoresponse force microscopy (PFM) at the nanoscale.
引用
收藏
页码:107 / 126
页数:20
相关论文
共 52 条
[1]  
Alexe M., 2004, Nanoscale Characterization of Ferroelectric Materials, DOI 10.1007/978-3-662-08901-9
[2]   Ferroelectric and Related Phenomena in Biological and Bioinspired Nanostructures [J].
Amdursky, N. ;
Beker, P. ;
Schklovsky, J. ;
Gazit, E. ;
Rosenman, G. .
FERROELECTRICS, 2010, 399 :107-117
[3]  
[Anonymous], 2002, HYPERCHEM 7 5 TOOLS
[4]  
Bdikin I., 2012, P 6 INT C CONT ACH B, P11
[5]   Polarization switching and patterning in self-assembled peptide tubular structures [J].
Bdikin, Igor ;
Bystrov, Vladimir ;
Delgadillo, Ivonne ;
Gracio, Jose ;
Kopyl, Svitlana ;
Wojtas, Maciej ;
Mishina, Elena ;
Sigov, Alexander ;
Kholkin, Andrei L. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[6]  
Boldyreva EV, 2003, J THERM ANAL CALORIM, V73, P419, DOI 10.1023/A:1025457524874
[7]  
Boldyreva EV, 2003, J THERM ANAL CALORIM, V73, P409, DOI 10.1023/A:1025405508035
[8]   Accurate Kohn-Sham DFT with the speed of tight binding: Current techniques and future directions in materials modelling [J].
Briddon, P. R. ;
Rayson, M. J. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (06) :1309-1318
[9]  
Briddon PR, 2000, PHYS STATUS SOLIDI B, V217, P131, DOI 10.1002/(SICI)1521-3951(200001)217:1<131::AID-PSSB131>3.0.CO
[10]  
2-M