An in situ SAXS investigation of the formation of silver nanoparticles and bimetallic silver-gold nanoparticles in controlled wet-chemical reduction synthesis

被引:68
作者
Garcia, Paulo R. A. F. [1 ]
Prymak, Oleg [2 ,3 ]
Grasmik, Viktoria [2 ,3 ]
Pappert, Kevin [2 ,3 ]
Wlysses, Wagner [1 ]
Otubo, Larissa [4 ]
Epple, Matthias [2 ,3 ]
Oliveira, Cristiano L. P. [1 ]
机构
[1] Univ Sao Paulo, Inst Phys, Rua Matao 1371, BR-05508090 Sao Paulo, Brazil
[2] Univ Duisburg Essen, Inorgan Chem, Univ Str 5-7, D-45117 Essen, Germany
[3] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, Univ Str 5-7, D-45117 Essen, Germany
[4] IPEN CNEN SP, Inst Pesquisas Energet & Nucl, LMM, BR-05508000 Sao Paulo, SP, Brazil
来源
NANOSCALE ADVANCES | 2020年 / 2卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
ANGLE SCATTERING DATA; PARTICLE-SIZE DISTRIBUTION; METAL NANOPARTICLES; GROWTH; ALLOY; MECHANISM; NUCLEATION; EVOLUTION; AG;
D O I
10.1039/c9na00569b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a study on the formation of silver (Ag) and bimetallic silver-gold (AgAu) nanoparticles monitored by in situ SAXS as well as by ex situ TEM, XRD and UV-vis analysis in a flow reactor at controlled reaction temperature. The formation mechanism of the nanoparticles is derived from the structural parameters obtained from the experimental data. The evolution of the average particle size of pure and alloyed nanoparticles shows that the particle growth occurs initially by a coalescence mechanism. The later growth of pure silver nanoparticles is well described by Ostwald ripening and for the alloyed nanoparticles by a process with a significantly slower growth rate. Additionally, the SAXS data of pure silver nanoparticles revealed two major populations of nanoparticles, the first one with a continuous crystal growth to a saturation plateau, and the second one probably with a continuous emergence of small new crystals. The particle sizes obtained by SAXS agree well with the results from transmission electron microscopy and X-ray diffraction. The present study demonstrates the capability of an in situ investigation of synthesis processes using a laboratory based SAXS instrument. Online monitoring of the synthesis permitted a detailed investigation of the structural evolution of the system.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 60 条
[1]   PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments [J].
Ahlberg, Sebastian ;
Antonopulos, Alexandra ;
Diendorf, Joerg ;
Dringen, Ralf ;
Epple, Matthias ;
Floeck, Rebekka ;
Goedecke, Wolfgang ;
Graf, Christina ;
Haberl, Nadine ;
Helmlinger, Jens ;
Herzog, Fabian ;
Heuer, Frederike ;
Hirn, Stephanie ;
Johannes, Christian ;
Kittler, Stefanie ;
Koeller, Manfred ;
Korn, Katrin ;
Kreyling, Wolfgang G. ;
Krombach, Fritz ;
Lademann, Juergen ;
Loza, Kateryna ;
Luther, Eva M. ;
Malissek, Marcelina ;
Meinke, Martina C. ;
Nordmeyer, Daniel ;
Pailliart, Anne ;
Raabe, Joerg ;
Rancan, Fiorenza ;
Rothen-Rutishauser, Barbara ;
Ruehl, Eckart ;
Schleh, Carsten ;
Seibel, Andreas ;
Sengstock, Christina ;
Treuel, Lennart ;
Vogt, Annika ;
Weber, Katrin ;
Zellner, Reinhard .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 :1944-1965
[2]   Structural Evolution of Silver Nanoparticles during Wet-Chemical Synthesis [J].
Banerjee, S. ;
Loza, K. ;
Meyer-Zaika, W. ;
Prymak, O. ;
Epple, M. .
CHEMISTRY OF MATERIALS, 2014, 26 (02) :951-957
[3]   Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis [J].
Banerjee, Soham ;
Liu, Chia-Hao ;
Lee, Jennifer D. ;
Kovyakh, Anton ;
Grasmik, Viktoria ;
Prymak, Oleg ;
Koenigsmann, Christopher ;
Liu, Haiqing ;
Wang, Lei ;
Abeykoon, A. M. Milinda ;
Wong, Stanislaus S. ;
Epple, Matthias ;
Murray, Christopher B. ;
Billinge, Simon J. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (51) :29498-29506
[4]   Preparation of tailor-made supported catalysts using asymmetric flow field flow fractionation and their application in hydrogenation [J].
Baumgard, Jens ;
Pohl, Marga-Martina ;
Kragl, Udo ;
Steinfeldt, Norbert .
NANOTECHNOLOGY REVIEWS, 2014, 3 (01) :87-98
[5]   Thermodynamics of nanoalloys [J].
Calvo, Florent .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (42) :27922-27939
[6]   Problems associated with the treatment of conductivity-concentration data in surfactant solutions:: Simulations and experiments [J].
Carpena, P ;
Aguiar, J ;
Bernaola-Galván, P ;
Ruiz, CC .
LANGMUIR, 2002, 18 (16) :6054-6058
[7]   Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions [J].
Chen, Dong ;
Li, Chengyin ;
Liu, Hui ;
Ye, Feng ;
Yang, Jun .
SCIENTIFIC REPORTS, 2015, 5
[8]   Simultaneous SAXS/WAXS/UV-Vis Study of the Nucleation and Growth of Nanoparticles: A Test of Classical Nucleation Theory [J].
Chen, Xuelian ;
Schroeder, Jan ;
Hauschild, Stephan ;
Rosenfeldt, Sabine ;
Dulle, Martin ;
Foerster, Stephan .
LANGMUIR, 2015, 31 (42) :11678-11691
[9]   Phase ordering with a global conservation law: Ostwald ripening and coalescence [J].
Conti, Massimo ;
Meerson, Baruch ;
Peleg, Avner ;
Sasorov, Pavel V. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046117
[10]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346