CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria

被引:81
作者
Behler, Juliane [1 ]
Vijay, Dhanya [2 ]
Hess, Wolfgang R. [1 ,3 ]
Akhtar, M. Kalim [2 ]
机构
[1] Univ Freiburg, Genet & Expt Bioinformat, Inst Biol 3, Fac Biol, Freiburg, Germany
[2] United Arab Emirates Univ, Dept Chem, Al Ain, U Arab Emirates
[3] Univ Freiburg, Freiburg Inst Adv Studies, Freiburg, Germany
关键词
SP PCC 6803; SEQUENCE-SPECIFIC CONTROL; PHOTOSYNTHETIC PRODUCTION; ETHANOL-PRODUCTION; SYNTHETIC BIOLOGY; STRUCTURAL BASIS; ACID PRODUCTION; RNA; SYNECHOCYSTIS; GENE;
D O I
10.1016/j.tibtech.2018.05.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In metabolic engineering, the production of industrially relevant chemicals, via rational engineering of microorganisms, is an intensive area of research. One particular group of microorganisms that is fast becoming recognized for their commercial potential is cyanobacteria. Through the process of photosynthesis, cyanobacteria can use CO2 as a building block to synthesize carbon-based chemicals. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)-dependent approaches have rapidly gained popularity for engineering cyanobacteria. Such approaches permit markerless genome editing, simultaneous manipulation of multiple genes, and transcriptional regulation of genes. The drastically shortened timescale for mutant selection and segregation is especially advantageous for cyanobacterial work. In this review, we highlight studies that have implemented CRISPR-based tools for the metabolic engineering of cyanobacteria.
引用
收藏
页码:996 / 1010
页数:15
相关论文
共 86 条
[1]   C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Konermann, Silvana ;
Joung, Julia ;
Slaymaker, Ian M. ;
Cox, David B. T. ;
Shmakov, Sergey ;
Makarova, Kira S. ;
Semenova, Ekaterina ;
Minakhin, Leonid ;
Severinov, Konstantin ;
Regev, Aviv ;
Lander, Eric S. ;
Koonin, Eugene V. ;
Zhang, Feng .
SCIENCE, 2016, 353 (6299)
[2]   Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease [J].
Anders, Carolin ;
Niewoehner, Ole ;
Duerst, Alessia ;
Jinek, Martin .
NATURE, 2014, 513 (7519) :569-+
[3]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[4]   The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR-Cas subtype III-Bv system [J].
Behler, Juliane ;
Sharma, Kundan ;
Reimann, Viktoria ;
Wilde, Annegret ;
Urlaub, Henning ;
Hess, Wolfgang R. .
NATURE MICROBIOLOGY, 2018, 3 (03) :367-377
[5]   Synthetic biology of cyanobacteria: unique challenges and opportunities [J].
Berla, Bertram M. ;
Saha, Rajib ;
Immethun, Cheryl M. ;
Maranas, Costas D. ;
Moon, Tae Seok ;
Pakrasi, Himadri B. .
FRONTIERS IN MICROBIOLOGY, 2013, 4
[6]   Improved Eco-Friendly Recombinant Anabaena sp. Strain PCC7120 with Enhanced Nitrogen Biofertilizer Potential [J].
Chaurasia, Akhilesh Kumar ;
Apte, Shree Kumar .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (02) :395-399
[7]   A novel counter-selection method for markerless genetic modification in Synechocystis sp PCC 6803 [J].
Cheah, Yi Ern ;
Albers, Stevan C. ;
Peebles, Christie A. M. .
BIOTECHNOLOGY PROGRESS, 2013, 29 (01) :23-30
[8]   Spatial and Temporal Organization of Chromosome Duplication and Segregation in the Cyanobacterium Synechococcus elongatus PCC 7942 [J].
Chen, Anna H. ;
Afonso, Bruno ;
Silver, Pamela A. ;
Savage, David F. .
PLOS ONE, 2012, 7 (10)
[9]   High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System [J].
Cobb, Ryan E. ;
Wang, Yajie ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (06) :723-728
[10]   Consequences of Cas9 cleavage in the chromosome of Escherichia coli [J].
Cui, Lun ;
Bikard, David .
NUCLEIC ACIDS RESEARCH, 2016, 44 (09) :4243-4251