How Intrinsically Disordered Proteins Modulate Biomolecular Condensates

被引:1
|
作者
Wang, Yanyan [1 ]
Chen, Limin [1 ]
Li, Siyang [1 ]
Lai, Luhua [1 ]
机构
[1] Peking Univ, Acad Adv Interdisplinary Studies, Chinese Acad Med Sci 2021RU014, Coll Chem & Mol Engn,Unit Drug Design Method, Beijing 100871, Peoples R China
关键词
intrinsically disordered proteins; biomolecular codensates; driving force; chemical compound regulation; LIQUID PHASE-SEPARATION; FORCE-FIELD; DOMAIN; PHOSPHORYLATION; GRANULES; MECHANISMS; POLYMERS; DROPLETS; BINDING; VIEW;
D O I
10.7535/PC220324
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomolecular condensates form various cellular membraneless organelles and play diverse biological functions as a result of their specific physicochemical properties. For example, biomolecular condensates are able to perceive changes in the external environment, regulate the cellular concentration of proteins, modulate different signaling pathways and selectively partition hub protiens as well as nucleic acids. Abnormal formation and changes of biomolecular condensates are closely related to human diseases, especially neurodegenerative diseases, cancers and viral diseases such as COVID-19. Intrinsically disordered proteins (IDPs) play key roles in the formation and regulation of biomolecular condensates formation and regulation, propose the possibility of rationally regulating biomolecular condensates through ligand design targeting IDPs, and discuss the challenges of understanding biomolecular condensates through ligand design targeting IDPs, and discuss the challenges of understanding biomolecular condensate formation and regulation mechanisms and for discovering novel chemical compounds to modulate biomolecular condensates.
引用
收藏
页码:1610 / 1618
页数:9
相关论文
共 50 条
  • [1] Intrinsically disordered proteins and biomolecular condensates as drug targets
    Biesaga, Mateusz
    Frigole-Vivas, Marta
    Salvatella, Xavier
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2021, 62 : 90 - 100
  • [2] Intrinsically disordered proteins/regions and insight into their biomolecular interactions
    Chakrabarti, Pinak
    Chakravarty, Devlina
    BIOPHYSICAL CHEMISTRY, 2022, 283
  • [3] How intrinsically disordered proteins order plant gene silencing
    Shang, Baoshuan
    Li, Changhao
    Zhang, Xiuren
    TRENDS IN GENETICS, 2024, 40 (03) : 260 - 275
  • [4] Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry
    Abyzov, Anton
    Blackledge, Martin
    Zweckstetter, Markus
    CHEMICAL REVIEWS, 2022, 122 (06) : 6719 - 6748
  • [5] Dynamics and interactions of intrinsically disordered proteins
    Arai, Munehito
    Suetaka, Shunji
    Ooka, Koji
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 84
  • [6] Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates
    Scholl, Daniel
    Deniz, Ashok A.
    JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (01)
  • [7] How to drug a cloud? Targeting intrinsically disordered proteins
    Uversky, Vladimir N.
    PHARMACOLOGICAL REVIEWS, 2025, 77 (02)
  • [8] How phosphorylation impacts intrinsically disordered proteins and their function
    Newcombe, Estella A.
    Delaforge, Elise
    Hartmann-Petersen, Rasmus
    Skriver, Karen
    Kragelund, Birthe B.
    ESSAYS IN BIOCHEMISTRY, 2022, 66 (07) : 901 - 913
  • [9] Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases
    Coskuner-Weber, Orkid
    Mirzanli, Ozan
    Uversky, Vladimir N.
    BIOPHYSICAL REVIEWS, 2022, 14 (03) : 679 - 707
  • [10] Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases
    Orkid Coskuner-Weber
    Ozan Mirzanli
    Vladimir N. Uversky
    Biophysical Reviews, 2022, 14 : 679 - 707