Discrete wavelet transforms for Toeplitz matrices

被引:2
作者
Lin, FR
Ching, WK
Ng, MK
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Shantou Univ, Dept Math, Guangdong 515063, Peoples R China
关键词
Toeplitz matrix; circulant matrix; discrete wavelet transforms; discrete Fourier transform; Toeplitz-like structure;
D O I
10.1016/S0024-3795(03)00415-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss discrete wavelet transforms for Toeplitz matrices and block-Toeplitz-Toeplitz-block matrices. The main contribution of this paper is to give the Toeplitz-like structure of the wavelet transformed Toeplitz matrices, and show that the computational cost for such structure is O(k(3)ln) where n is the size of the Toeplitz matrix, k is the order of the wavelet and 1 is the level used in the wavelet transform. The comparison between the wavelet transformed Toeplitz matrices and the Fourier transformed Toeplitz matrices is also given. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 50 条
  • [21] On the convergence of the inverses of Toeplitz matrices and its applications
    Sun, FW
    Jiang, YM
    Baras, JS
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) : 180 - 190
  • [22] NONCIRCULANT TOEPLITZ MATRICES ALL OF WHOSE POWERS ARE TOEPLITZ
    Griffin, Kent
    Stuart, Jeffrey L.
    Tsatsomeros, Michael J.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1185 - 1193
  • [23] Toeplitz matrices are unitarily similar to symmetric matrices
    Chien, Mao-Ting
    Liu, Jianzhen
    Nakazato, Hiroshi
    Tam, Tin-Yau
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10) : 2131 - 2144
  • [24] Infinite limitedly-toeplitz extensions of Toeplitz matrices
    Il'in S.N.
    [J]. Journal of Mathematical Sciences, 2006, 132 (2) : 160 - 165
  • [25] Noncirculant Toeplitz matrices all of whose powers are Toeplitz
    Kent Griffin
    Jeffrey L. Stuart
    Michael J. Tsatsomeros
    [J]. Czechoslovak Mathematical Journal, 2008, 58 : 1185 - 1193
  • [26] Companion matrices and their relations to Toeplitz and Hankel matrices
    Luo, Yousong
    Hill, Robin
    [J]. SPECIAL MATRICES, 2015, 3 (01): : 214 - 226
  • [27] A geometric mean for Toeplitz and Toeplitz-block block-Toeplitz matrices
    Nobari, Elham
    Kakavandi, Bijan Ahmadi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 548 : 189 - 202
  • [28] Deconvolution and Regularization with Toeplitz Matrices
    Per Christian Hansen
    [J]. Numerical Algorithms, 2002, 29 : 323 - 378
  • [29] Toeplitz and Hankel matrices on Cn
    Yoshino, T
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) : 115 - 122
  • [30] Permutability of Toeplitz and Hankel matrices
    Chugunov, V. N.
    Ikramov, Kh. D.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 226 - 242