A kinetic model of the dissolution of magnetite (Fe3O4) in EDTA solutions

被引:0
作者
Tamura, H
Takasaki, S
Furuichi, R
机构
[1] Hokkaido Univ, Grad Sch Engn, Res Grp Mat Chem, Kita Ku, Sapporo, Hokkaido 0608628, Japan
[2] Kurita Water Ind Ltd, Kurita Cent Labs, Kanagawa 2430124, Japan
关键词
magnetite; EDTA; dissolution rate; kinetic model; dissolving EDTA species;
D O I
暂无
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Magnetite, an iron oxide present under reducing conditions,is a component of soils, iron ores, corrosion scales on iron and steels, and others. For a wet analysis of magnetite in samples, magnetite is preliminarily dissolved; the precision and accuracy of the final analytical results are greatly influenced by the dissolution process. A dissolution model would be useful in the design of dissolution processes and control of the optimum dissolution conditions for particular analytical purposes. Here, modeling was made for the kinetics of the dissolution of magnetite in EDTA (H4Y) solutions by assuming the following successive reactions: 1) chelation of the Fe ion sites on Fe3O4 with HnY(4-n-), and the transfer of Fe chelates to the solution; 2) the reaction of the oxide ion sites left behind on Fe3O4 with protons, and the transfer of the formed water to the solution. The derived rate equation reproduced the time-course of the dissolved Fe concentration and the Fe concentration peaks at pH 2.3. For five EDTA species with different proton numbers (n = 0 similar to 4), the resulting model parameters (rate constants) were examined in the pH range 1.5 similar to 3.3. From the pH dependence of the model parameters, H2Y2- was estimated to be the most likely dissolving EDTA species in solution.
引用
收藏
页码:397 / 403
页数:7
相关论文
共 50 条
[31]   Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nano-composites for catalytic reduction of nitroaromatic compounds [J].
Tuo, Ya ;
Liu, Guangfei ;
Dong, Bin ;
Zhou, Jiti ;
Wang, Aijie ;
Wang, Jing ;
Jin, Ruofei ;
Lv, Hong ;
Dou, Zeou ;
Huang, Wenyu .
SCIENTIFIC REPORTS, 2015, 5
[32]   Preparation and properties of novel magnetic Fe3O4/EDTA nano-composite particles [J].
Jiang, W ;
Li, FS ;
Chen, LY ;
Yang, Y ;
Chu, JJ .
ACTA PHYSICO-CHIMICA SINICA, 2005, 21 (02) :182-186
[33]   Properties of SILAR deposited magnetite (Fe3O4) thin films: effect of bath temperatures [J].
S. Sheik Fareed ;
N. Mythili ;
G. Vijayaprasath ;
R. Murugan ;
H. Mohamed Mohaideen ;
R. Chandramohan ;
G. Ravi .
Journal of Materials Science: Materials in Electronics, 2017, 28 :9450-9455
[34]   Effect of formic acid (HCOOH) on the corrosion protectiveness of magnetite (Fe3O4) at elevated temperature [J].
Eslami, Maryam ;
Choi, Yoon-Seok ;
Nesic, Srdjan ;
Breining, Robert .
CORROSION SCIENCE, 2024, 229
[35]   Synthesis and surface properties of magnetite (Fe3O4) nanoparticles infiltrated into porous silicon template [J].
Harraz, Farid A. .
APPLIED SURFACE SCIENCE, 2013, 287 :203-210
[36]   Thermal equation of state of Fe3O4 magnetite up to 16 GPa and 1100 K [J].
Siersch, Nicki C. ;
Criniti, Giacomo ;
Kurnosov, Alexander ;
Glazyrin, Konstantin ;
Antonangeli, Daniele .
AMERICAN MINERALOGIST, 2023, 108 (07) :1322-1329
[37]   Magnetite (Fe3O4) tetrakaidecahedral microcrystals: Synthesis, characterization, and micro-Raman study [J].
Guo, Changfa ;
Hu, Yong ;
Qian, Haisheng ;
Ning, Jiqiang ;
Xu, Shijie .
MATERIALS CHARACTERIZATION, 2011, 62 (01) :148-151
[38]   Nanostructured magnetite (Fe3O4) thin films prepared by sol-gel method [J].
Tang, NJ ;
Zhong, W ;
Jiang, HY ;
Wu, XL ;
Liu, W ;
Du, YW .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 282 :92-95
[39]   Solvothermal Synthesis of the Magnetite Micro-nano Particles (Fe3O4) with Different Morphologies [J].
Gao Qian ;
Zhang Ji-Lin ;
Hong Guang-Yan ;
Ni Jia-Zuan .
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2011, 32 (03) :552-559
[40]   Variable temperature powder neutron diffraction study of the Verwey transition in magnetite Fe3O4 [J].
Wright, JP ;
Bell, AMT ;
Attfield, JP .
SOLID STATE SCIENCES, 2000, 2 (08) :747-753