A kinetic model of the dissolution of magnetite (Fe3O4) in EDTA solutions

被引:0
作者
Tamura, H
Takasaki, S
Furuichi, R
机构
[1] Hokkaido Univ, Grad Sch Engn, Res Grp Mat Chem, Kita Ku, Sapporo, Hokkaido 0608628, Japan
[2] Kurita Water Ind Ltd, Kurita Cent Labs, Kanagawa 2430124, Japan
关键词
magnetite; EDTA; dissolution rate; kinetic model; dissolving EDTA species;
D O I
暂无
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Magnetite, an iron oxide present under reducing conditions,is a component of soils, iron ores, corrosion scales on iron and steels, and others. For a wet analysis of magnetite in samples, magnetite is preliminarily dissolved; the precision and accuracy of the final analytical results are greatly influenced by the dissolution process. A dissolution model would be useful in the design of dissolution processes and control of the optimum dissolution conditions for particular analytical purposes. Here, modeling was made for the kinetics of the dissolution of magnetite in EDTA (H4Y) solutions by assuming the following successive reactions: 1) chelation of the Fe ion sites on Fe3O4 with HnY(4-n-), and the transfer of Fe chelates to the solution; 2) the reaction of the oxide ion sites left behind on Fe3O4 with protons, and the transfer of the formed water to the solution. The derived rate equation reproduced the time-course of the dissolved Fe concentration and the Fe concentration peaks at pH 2.3. For five EDTA species with different proton numbers (n = 0 similar to 4), the resulting model parameters (rate constants) were examined in the pH range 1.5 similar to 3.3. From the pH dependence of the model parameters, H2Y2- was estimated to be the most likely dissolving EDTA species in solution.
引用
收藏
页码:397 / 403
页数:7
相关论文
共 50 条
[21]   Potential of Functionalized Magnetite (Fe3O4) in Decontamination of Pathogenic Bacteria from Milk [J].
Hameed, Aneela ;
Mushtaq, Hafiza Mehvish ;
Akhtar, Saeed ;
Ismail, Tariq ;
Hussain, Majid ;
Sheikh, Ahsan Sattar ;
Merani, Zulfiqar Ali ;
Ghafar, Abdul .
JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2019, 41 (06) :1014-1018
[22]   Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study [J].
Levy, Davide ;
Giustetto, Roberto ;
Hoser, Andreas .
PHYSICS AND CHEMISTRY OF MINERALS, 2012, 39 (02) :169-176
[23]   Synthesis and characterizatation of magnetite nanoparticle coated humic acid (Fe3O4/HA) [J].
Koesnarpadi, Soerja ;
Santosa, Sri Juari ;
Siswanta, Dwi ;
Rusdiarso, Bambang .
ENVIRONMENTAL FORENSICS 2015, 2015, 30 :103-108
[24]   Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films [J].
Cortes, M. ;
Gomez, E. ;
Sadler, J. ;
Valles, E. .
ELECTROCHIMICA ACTA, 2011, 56 (11) :4087-4091
[25]   Magnetite (Fe3O4) microcapsules prepared using a glass membrane and solvent removal [J].
Omi, S ;
Kanetaka, A ;
Shimamori, Y ;
Supsakulchai, A ;
Nagai, M ;
Ma, GH .
JOURNAL OF MICROENCAPSULATION, 2001, 18 (06) :749-765
[26]   Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study [J].
Davide Levy ;
Roberto Giustetto ;
Andreas Hoser .
Physics and Chemistry of Minerals, 2012, 39 :169-176
[27]   Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation [J].
Ganapathe, Lokesh Srinath ;
Mohamed, Mohd Ambri ;
Yunus, Rozan Mohamad ;
Berhanuddin, Dilla Duryha .
MAGNETOCHEMISTRY, 2020, 6 (04) :1-35
[28]   Stability of Magnetite Layer on Fe3O4/MgO(001) and Fe3O4/Fe/MgO(001) Films under 1MeV Kr+ Ion Irradiation [J].
Krupska, Magdalena ;
Duda, Aneta ;
Kim-Ngan, N. -T. H. ;
Balogh, A. G. .
PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
[29]   Synthesis of γ-Fe2O3, Fe3O4 and Copper Doped Fe3O4 Nanoparticles by Sonochemical Method [J].
Mohanraj, Kannusamy ;
Sivakumar, Ganesan .
SAINS MALAYSIANA, 2017, 46 (10) :1935-1942
[30]   Synthesis of Fe3O4/PMMA composite latex particles:: Kinetic modeling [J].
Wang, PC ;
Chiu, WY ;
Young, TH .
JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (06) :4925-4934