Finite element discretization error analysis of a surface tension force in two-phase incompressible flows

被引:47
作者
Gross, Sven [1 ]
Reusken, Arnold [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
关键词
two-phase flow; continuum surface force technique; interface; Laplace-Beltrami operator; finite elements;
D O I
10.1137/060667530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a standard model for a stationary two-phase incompressible flow with surface tension. In the variational formulation of the model a linear functional which describes the surface tension force occurs. This functional depends on the location and the curvature of the interface. In a finite element discretization method the functional has to be approximated. For an approximation method based on a Laplace-Beltrami representation of the curvature we derive sharp bounds for the approximation error. A new modified approximation method with a significantly smaller error is introduced.
引用
收藏
页码:1679 / 1700
页数:22
相关论文
共 29 条
  • [1] Antontsev S., 2000, Interfaces Free Bound, P413, DOI 10.4171/IFB/27
  • [2] ANTONTSEV SN, 2001, ANN UNIV FERRARA, V47, P269
  • [3] Bänsch E, 2001, NUMER MATH, V88, P203, DOI 10.1007/s002110000225
  • [4] BANSCH E, 1998, THESIS U FREIBURG FR
  • [5] A CONTINUUM METHOD FOR MODELING SURFACE-TENSION
    BRACKBILL, JU
    KOTHE, DB
    ZEMACH, C
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) : 335 - 354
  • [6] A level set formulation of eulerian interface capturing methods for incompressible fluid flows
    Chang, YC
    Hou, TY
    Merriman, B
    Osher, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (02) : 449 - 464
  • [7] Deckelnick K, 2003, UNIVERSITEXT, P63
  • [8] An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces
    Demlow, Alan
    Dziuk, Gerhard
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) : 421 - 442
  • [9] DZIUK G, 1991, NUMER MATH, V58, P603
  • [10] GANESAN S, 2005, SPURIOUS VELOCITIES