Phenomenological Model of Barkhausen Noise Under Mechanical and Magnetic Excitations

被引:15
作者
Ducharne, B. [1 ]
Gupta, B. [1 ,2 ,3 ]
Hebrard, Y. [4 ]
Coudert, J. B. [4 ]
机构
[1] INSA Lyon, Lab Genie Elect & Ferroelect, F-69100 Villeurbanne, France
[2] Tohoku Univ, ELyTMaX, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
[4] SKF Aerosp, F-26300 Valence, France
关键词
Barkhausen noise (BN); hysteresis; magnetic hysteresis loop; mechanical stress; model; FERROELECTRIC CERAMICS; HYSTERESIS; BEHAVIOR; FREQUENCY;
D O I
10.1109/TMAG.2018.2833419
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Post-treatment and rescaling is made possible to plot local hysteresis cycles from the measurement of local magnetic Barkhausen noise (BN). If the material is homogeneous and if similar excitation conditions are imposed, the local hysteresis cycles obtained are comparable to the classical magnetic hysteresis cycles B(H) (the cross section magnetic average induction B as a function of the surface tangential excitation field H). These local BN hysteresis cycles provide interesting clues about the evolution of the microstructure of the magnetic material (internal stresses, level of degradation, etc.). This makes it an interesting tool for the non-destructive evaluation of ferromagnetic steels. In this paper, a phenomenological modeling of the BN from the local modeling of B subjected to an excitation field H and/or a uniaxial mechanical stress T is proposed. The final objective is to provide an absolute quantification of the internal residual stresses from the BN measurements.
引用
收藏
页数:6
相关论文
共 23 条
  • [1] Dynamic hysteresis modeling based on Preisach model
    Bernard, Y
    Mendes, E
    Bouillault, F
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 885 - 888
  • [2] ANALYTICAL THEORY OF THE BEHAVIOUR OF FERROMAGNETIC MATERIALS
    BIORCI, G
    PESCETTI, D
    [J]. NUOVO CIMENTO, 1958, 7 (06): : 829 - 842
  • [3] A General Hysteresis Operator for the Modeling of Vector Fields
    Cardelli, E.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (08) : 2056 - 2067
  • [4] Cardelli E., 2018, HDB MAGNETIC MAT, V24, P323
  • [5] Dobmann G., 2008, ELECTROMAGNETIC NOND
  • [6] Low frequency modelling of hysteresis behaviour and dielectric permittivity in ferroelectric ceramics under electric field
    Ducharne, B.
    Guyomar, D.
    Sebald, G.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (02) : 551 - 555
  • [7] Characterization and modeling of magnetic domain wall dynamics using reconstituted hysteresis loops from Barkhausen noise
    Ducharne, B.
    Le, M. Q.
    Sebald, G.
    Cottinet, P. J.
    Guyomar, D.
    Hebrard, Y.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 432 : 231 - 238
  • [8] Dynamics of magnetic field penetration into soft ferromagnets
    Ducharne, B.
    Sebald, G.
    Guyomar, D.
    Litak, G.
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 117 (24)
  • [9] Ducharne B., 2017, INT J DYN CONTROL, V6, P89
  • [10] Dynamical hysteresis model of ferroelectric ceramics under electric field using fractional derivatives
    Guyomar, D.
    Ducharne, B.
    Sebald, G.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (19) : 6048 - 6054