Assessment of survival prediction models based on microarray data

被引:80
作者
Schumacher, Martin [1 ]
Binder, Harald
Gerds, Thomas
机构
[1] Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, Dep Med Biometry & Stat, Freiburg, Germany
[2] Univ Freiburg, Freiburg Ctr Data Anal & Model Bldg, Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btm232
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In the process of developing risk prediction models, various steps of model building and model selection are involved. If this process is not adequately controlled, overfitting may result in serious overoptimism leading to potentially erroneous conclusions. Methods: For right censored time-to-event data, we estimate the prediction error for assessing the performance of a risk prediction model (Gerds and Schumacher, 2006; Graf et al., 1999). Furthermore, resampling methods are used to detect overfitting and resulting overoptimism and to adjust the estimates of prediction error (Gerds and Schumacher, 2007). Results: We show how and to what extent the methodology can be used in situations characterized by a large number of potential predictor variables where overfitting may be expected to be overwhelming. This is illustrated by estimating the prediction error of some recently proposed techniques for fitting a multivariate Cox regression model applied to the data of a prognostic study in patients with diffuse large-B-cell lymphoma (DLBCC).
引用
收藏
页码:1768 / 1774
页数:7
相关论文
共 50 条
[21]   Multiple testing in the survival analysis of microarray data [J].
Correa, JA ;
Dudoit, S ;
Goldstein, DR .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2002, 10 :298-298
[22]   The dChip survival analysis module for microarray data [J].
Amin, Samir B. ;
Shah, Parantu K. ;
Yan, Aimin ;
Adamia, Sophia ;
Minvielle, Stephane ;
Avet-Loiseau, Herve ;
Munshi, Nikhil C. ;
Li, Cheng .
BMC BIOINFORMATICS, 2011, 12
[23]   Joint Models for Event Prediction From Time Series and Survival Data [J].
Yue, Xubo ;
Al Kontar, Raed .
TECHNOMETRICS, 2021, 63 (04) :477-486
[24]   Additive risk survival model with microarray data [J].
Shuangge Ma ;
Jian Huang .
BMC Bioinformatics, 8
[25]   The dChip survival analysis module for microarray data [J].
Samir B Amin ;
Parantu K Shah ;
Aimin Yan ;
Sophia Adamia ;
Stéphane Minvielle ;
Hervé Avet-Loiseau ;
Nikhil C Munshi ;
Cheng Li .
BMC Bioinformatics, 12
[26]   Mortality prediction using survival energy models with functional data analysis [J].
Mitsuda, Daiki ;
Shimizu, Yasutaka .
JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (02) :841-859
[27]   Field assessment of liquefaction prediction models based on geotechnical versus geospatial data, with lessons for each [J].
Geyin, Mertcan ;
Baird, Alex J. ;
Maurer, Brett W. .
EARTHQUAKE SPECTRA, 2020, 36 (03) :1386-1411
[28]   Prediction of Lung Cancer Survival Based on Multiomic Data [J].
Jaksik, Roman ;
Smieja, Jaroslaw .
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 :116-127
[29]   Improving Prediction Models for Mass Assessment: A Data Stream Approach [J].
Shi, Donghui ;
Zurada, Jozef ;
Guan, Jian ;
Levitan, Alan S. .
PROCEEDINGS OF THE 53RD ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2020, :1046-1055
[30]   Prophet, a web-based tool for class prediction using microarray data [J].
Medina, Ignacio ;
Montaner, David ;
Tarraga, Joaquin ;
Dopazo, Joaquin .
BIOINFORMATICS, 2007, 23 (03) :390-391