On p-normal forms of nonlinear systems

被引:86
作者
Cheng, DZ [1 ]
Lin, W
机构
[1] Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
关键词
differential geometric approach; feedback equivalence; local diffeamorphism; nonlinear systems; p-normal form; state feedback;
D O I
10.1109/TAC.2003.814270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using the differential-geometric control theory, we present in this note a necessary and sufficient condition under which an affine system is locally feedback equivalent to, via a change of coordinates and restricted smooth state feedback, a generalized normal form called p-normal form, which includes Brunovsky canonical form and feedback linearizable systems in a lower-triangular form as its special cases. We also give an algorithm for computing the appropriate coordinate transformations and feedback control laws.
引用
收藏
页码:1242 / 1248
页数:7
相关论文
共 23 条
  • [1] [Anonymous], ALGEBRAIC GEOMETRIC
  • [2] BROCKETT RW, 1978, P 6 IFAC WORLD C HEL, V6, P1115
  • [3] LOCAL STABILIZATION OF MINIMUM-PHASE NONLINEAR-SYSTEMS
    BYRNES, CI
    ISIDORI, A
    [J]. SYSTEMS & CONTROL LETTERS, 1988, 11 (01) : 9 - 17
  • [4] Equivalence of nonlinear systems to triangular form: The singular case
    Celikovsky, S
    Nijmeijer, H
    [J]. SYSTEMS & CONTROL LETTERS, 1996, 27 (03) : 135 - 144
  • [5] NONLINEAR CONTROLLABILITY AND OBSERVABILITY
    HERMANN, R
    KRENER, AJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) : 728 - 740
  • [6] GLOBAL TRANSFORMATIONS OF NON-LINEAR SYSTEMS
    HUNT, LR
    SU, R
    MEYER, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) : 24 - 31
  • [7] NON-LINEAR DECOUPLING VIA FEEDBACK - A DIFFERENTIAL GEOMETRIC APPROACH
    ISIDORI, A
    KRENER, AJ
    GORIGIORGI, C
    MONACO, S
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (02) : 331 - 345
  • [8] Isidori A., 1995, NONLINEAR SYSTEMS
  • [9] Jakubczyk B, 1980, Bull. Acad. Polon. Sci., V28, P517, DOI 10.12691/ajme-5-6-13
  • [10] Krener A. J., 1983, Proceedings of the 22nd IEEE Conference on Decision and Control, P126