Optical Properties of InAs Quantum Dots/GaAs Waveguides for Ultra-fast Scintillators

被引:11
作者
Dropiewski, K. [1 ]
Minns, A. [1 ]
Yakimov, M. [1 ]
Tokranov, V [1 ]
Murat, P. [2 ]
Oktyabrsky, S. [1 ]
机构
[1] SUNY Polytech Inst, 257 Fuller Rd, Albany, NY 12203 USA
[2] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
基金
美国国家科学基金会;
关键词
TIME; STABILITY; LIMITS;
D O I
10.1016/j.jlumin.2019.116952
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
InAs Quantum Dots (QDs) embedded in a GaAs matrix have unique scintillation properties, valuable for high-energy physics and medical applications. Temperature-dependent photoluminescence, waveguide attenuation and alpha particle response measurements were employed to analyze the optical properties of a 25 mu m thick waveguiding scintillator. Optimizing the electrostatics of the QD layered structure with p-type modulation doping resulted in QD photoluminescence (PL) efficiency as high as 60% at room temperature. Analysis of attenuation of the QD waveguide showed surface scattering predominated over the first 2-3 mm of light propagation and low (similar to 1 cm(-1)) self-absorption was more significant at longer distances, after the decay of high order modes (high angle light rays). Responses to 5.5 MeV alpha particles from the integrated photodiode on top of the QD scintillator/waveguide (QD/VVG) show an extremely fast (300 ps) decay constant, and a 70 ps time resolution (limited by circuit noise and bandwidth) with a collection efficiency of 17,000 photons per 1 MeV of deposited energy.
引用
收藏
页数:9
相关论文
共 33 条
[1]  
[Anonymous], [No title captured]
[2]   Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers [J].
Bhattacharya, P ;
Ghosh, S ;
Pradhan, S ;
Singh, J ;
Wu, ZK ;
Urayama, J ;
Kim, K ;
Norris, TB .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (08) :952-962
[3]   Quantum dot photodetectors based on structures with collective potential barriers [J].
Chien, Li-Hsin ;
Sergeev, A. ;
Mitin, V. ;
Oktyabrsky, S. .
QUANTUM SENSING AND NANOPHOTONIC DEVICES VII, 2010, 7608
[4]   Comparison of Fast Scintillators With TOF PET Potential [J].
Conti, Maurizio ;
Eriksson, Lars ;
Rothfuss, Harold ;
Melcher, Charles L. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (03) :926-933
[5]   An experiment to measure Mie and Rayleigh total scattering cross sections [J].
Cox, AJ ;
DeWeerd, AJ ;
Linden, J .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (06) :620-625
[6]   The quest for the ideal inorganic scintillator [J].
Derenzo, SE ;
Weber, MJ ;
Bourret-Courchesne, WE ;
Klintenberg, MK .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 505 (1-2) :111-117
[7]   Fundamental limits of scintillation detector timing precision [J].
Derenzo, Stephen E. ;
Choong, Woon-Seng ;
Moses, William W. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (13) :3261-3286
[8]   A new approach for improved time and position measurements for TOFPET: Time-stamping of the photo-electrons using analogue SiPMs [J].
Doroud, K. ;
Williams, M. C. S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 849 :16-19
[9]  
Dropiewski K., 2018, Nuclear Instruments and Methods in Physics Research Section A
[10]   Precise rise and decay time measurements of inorganic scintillators by means of X-ray and 511 keV excitation [J].
Gundacker, S. ;
Turtos, R. M. ;
Auffray, E. ;
Lecoq, P. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 891 :42-52