Advanced constitutive modelling for creep-fatigue assessment of high temperature components

被引:6
|
作者
Hosseini, Ehsan [1 ,2 ]
Holdsworth, Stuart [1 ,2 ]
Mazza, Edoardo [1 ,2 ,3 ]
机构
[1] EMPA, Swiss Fed Labs Mat Sci & Technol, Dubendorf, Switzerland
[2] Empa, Inspire Ctr Mech Integr, Dubendorf, Switzerland
[3] ETHZ, Swiss Fed Inst Technol, Zurich, Switzerland
关键词
Advanced constitutive modelling; creep; cyclic plasticity; creep-fatigue assessment; component-feature specimen service-cycle TMF testing; 10%Cr steel; STRAIN;
D O I
10.1080/09603409.2017.1398899
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Creep-fatigue assessment procedures for the design of high-temperature components should ensure lifetime predictions which are safe but not excessively conservative. Adoption of more accurate assessment procedures than are presently available enable the availability of power plant with greater operating flexibility. Operating flexibility is becoming a key market driver due to the increased interest in the use of intermittent renewable energy sources (e.g. wind, solar) which place focus on a requirement for turbo-machinery to be capable of reduced start-up and shut-down times. This study introduces a creep-fatigue assessment procedure for the design of high-temperature components required for flexible operation. In particular, it considers alloys with high creep-fatigue deformation/damage interaction characteristics such as the advanced martensitic 9-11%Cr steels which are widely used for power plant applications. The procedure takes advantages of advanced constitutive models and implements them in a state-of-the-art mechanical assessment procedure for calculating high-temperature component life times.
引用
收藏
页码:504 / 512
页数:9
相关论文
共 50 条
  • [1] APPLICATION CONCEPTS AND EXPERIMENTAL VALIDATION OF CONSTITUTIVE MATERIAL MODELS FOR CREEP-FATIGUE ASSESSMENT OF COMPONENTS
    Kontermann, Christian
    Linn, Stefan
    Oechsner, Matthias
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 8, 2019,
  • [2] A COMPARISON OF CREEP-FATIGUE ASSESSMENT AND MODELLING METHODS
    Pohja, Rami H.
    Holmstrom, Stefan B.
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2014, VOL 1, 2014,
  • [3] High temperature creep-fatigue design
    A. -A. F. Tavassoli
    B. Fournier
    M. Sauzay
    Transactions of the Indian Institute of Metals, 2010, 63 : 235 - 244
  • [4] Assessment of modelling methodologies for prediction of high-temperature creep-fatigue behaviour of Alloy 617
    Douzian, G.
    Muransky, O.
    Kruzic, J. J.
    Wright, R. N.
    Payten, W.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2020, 187
  • [5] High temperature creep-fatigue design
    Tavassoli, A. -A. F.
    Fournier, B.
    Sauzay, M.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2010, 63 (2-3): : 235 - 244
  • [6] Improved Methods of Creep-Fatigue Life Assessment of Components
    Scholz, A.
    Berger, C.
    ADVANCES IN MATERIALS TECHNOLOGY FOR FOSSIL POWER PLANTS, 2008, : 748 - 761
  • [7] Creep-fatigue Lifetime Assessment with Phenomenological and Constitutive Material Laws
    Linn, Stefan
    Scholz, Alfred
    6TH INTERNATIONAL CONFERENCE ON CREEP, FATIGUE AND CREEP-FATIGUE INTERACTION, 2013, 55 : 607 - 611
  • [8] Advances on creep-fatigue damage assessment in notched components
    Barbera, D.
    Chen, H.
    Liu, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2017, 40 (11) : 1854 - 1867
  • [9] High temperature creep, fatigue and creep-fatigue interaction in engineering materials
    Yokobori, T
    Yokobori, AT
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2001, 78 (11-12) : 903 - 908
  • [10] ASSESSMENT AND TEST OF THE CREEP-FATIGUE CRACK BEHAVIOUR FOR A HIGH TEMPERATURE COMPONENT
    Lee, Hyeong-Yeon
    Lee, Jae-Han
    Nikbin, Kamran
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 1, 2009, : 589 - 596