Revisiting an idea of Brezis and Nirenberg

被引:39
作者
Hsia, Chun-Hsiung [1 ]
Lin, Chang-Shou [1 ]
Wadade, Hidemitsu [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taida Inst Math Sci, Taipei 106, Taiwan
关键词
Nonlinear elliptic equation; Caffarelli-Kohn-Nirenberg inequality; Hardy-Sobolev critical exponent; CRITICAL ELLIPTIC-EQUATIONS; SCALAR CURVATURE EQUATION; INTERPOLATION INEQUALITIES; BOUNDARY SINGULARITIES; EXTREMAL-FUNCTIONS; SHARP CONSTANTS; MOVING PLANES; SOBOLEV; SYMMETRY; WEIGHTS;
D O I
10.1016/j.jfa.2010.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 3 and Omega be a C-1 bounded domain in R-n with 0 is an element of partial derivative Omega. Suppose partial derivative Omega is C-2 at 0 and the mean curvature of partial derivative Omega at 0 is negative, we prove the existence of positive solutions for the equation: {Delta u + lambda u(n+2/n-2) + u(2*(s)-1)/vertical bar x vertical bar(s) = 0 in Omega, u = 0 on partial derivative Omega, where lambda > 0, 0 < s < 2, 2*(s) = (2(n-s)n-2) and n >= 4. For n = 3, the existence result holds for 0 < s < 1. Under the same assumption of the domain Omega, for p <= 2* (s) - 1, we also prove the existence of a positive solution for the following equation: {Delta u + lambda u(p) + u(2*(s)-1)/vertical bar x vertical bar(s) = 0 in Omega, u = 0 on partial derivative Omega, where lambda > 0 and 1 <= p N n/n-2 (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1816 / 1849
页数:34
相关论文
共 19 条
[1]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[2]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[3]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[4]  
2-I
[5]  
Chen C., 2001, ANN SCUOLA NORM SU S, V30, P713
[6]  
Chen CC, 1997, COMMUN PUR APPL MATH, V50, P971, DOI 10.1002/(SICI)1097-0312(199710)50:10<971::AID-CPA2>3.0.CO
[7]  
2-D
[8]  
Chen CC, 1998, J DIFFER GEOM, V49, P115
[9]  
CHERN JL, ARCH RATION IN PRESS
[10]  
Dolbeault J, 2008, ANN SCUOLA NORM-SCI, V7, P313