Dominated ergodic theorems in rearrangement invariant spaces

被引:0
作者
Braverman, M
Rubshtein, BZ
Veksler, A
机构
[1] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
[2] Tashkent State Univ, Dept Math, Tashkent, Uzbekistan
关键词
rearrangement invariant space; ergodic theorem; Hardy-Littlewood property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces L-p and the classes L log(n) L.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1982, TRANSL MATH MONOGRAP
[2]   MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS [J].
ARINO, MA ;
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :727-735
[3]  
BRAVERMAN MS, 1977, SIBERIAN MATH J+, V18, P371
[4]  
BRAVERMAN MS, 1993, J LOND MATH SOC, V47, P119
[5]  
CALDERON AP, 1966, STUD MATH, V26, P273
[6]   INTEGRABILITY OF SUPREMUM OF ERGODIC RATIOS [J].
DERRIENNIC, Y .
ANNALS OF PROBABILITY, 1973, 1 (02) :338-340
[7]  
Doob J. L., 1953, Stochastic processes, V101
[8]  
Dunford N., 1958, LINEAR OPERATORS
[9]  
EDGAR GA, 1992, ENCY MATH APPL