A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering

被引:69
作者
Wang, Qian
Chu, Yanyan
He, Jianxin
Shao, Weili [1 ]
Zhou, Yuman
Qi, Kun
Wang, Lidan
Cui, Shizhong
机构
[1] Zhongyuan Univ Technol, Henan Prov Key Lab Funct Text Mat, Zhengzhou 450007, Henan, Peoples R China
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2017年 / 80卷
基金
中国国家自然科学基金;
关键词
Silk fibroin; Hydroxyapatite; Graphene oxide; Bone tissue engineering; POLYLACTIC ACID COMPOSITES; MESENCHYMAL STEM-CELLS; IN-VITRO; MECHANICAL-PROPERTIES; OSTEOBLASTIC CELLS; MINERALIZATION; FABRICATION; NANOFIBERS; SURFACE; FIBERS;
D O I
10.1016/j.msec.2017.05.133
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
To better mimic natural bone, a graphene oxide-hydroxyapatite/silk fibroin (cGO-HA/SF) scaffold was fabricated by biomineralizing carboxylated GO sheets, blending with SF, and freeze-drying. The material has increasing porosity and decreasing density from outside to inside. Analysis of GO mineralization in simulated body fluid indicated that carboxylation and Chitosan may synergistically regulate HA growth along the c-axis of weakly crystalline, rod-like GO-HA particles. Compared with HA/SF gradient composites, a cGO-HA gradient scaffold with cGO:HA mass ratio 1:4 has 5-fold and 2.5-fold higher compressive strength and compressive modulus, respectively. Additionally, the cGO-HA/SF composite stimulated mouse mesenchymal stem cell adhesion and proliferation, alkaline phosphatase secretion, and mineral deposition more strongly than HA/SF and pure HA scaffolds. Hence, the material may prove to be an excellent and versatile scaffold for bone tissue engineering. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 242
页数:11
相关论文
共 44 条
[1]   Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds [J].
Bhumiratana, Sarindr ;
Grayson, Warren L. ;
Castaneda, Andrea ;
Rockwood, Danielle N. ;
Gil, Eun S. ;
Kaplan, David L. ;
Vunjak-Novakovic, Gordana .
BIOMATERIALS, 2011, 32 (11) :2812-2820
[2]   Side-to-side and within-side variability of 3D bone microarchitecture by conventional micro-computed tomography of paired iliac crest biopsies [J].
Chappard, C. ;
Marchadier, A. ;
Benhamou, C. L. .
BONE, 2008, 43 (01) :203-208
[3]   GEL CASTING OF RESORBABLE POLYMERS .2. INVITRO DEGRADATION OF BONE-GRAFT SUBSTITUTES [J].
COOMBES, AGA ;
HECKMAN, JD .
BIOMATERIALS, 1992, 13 (05) :297-307
[4]   Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source [J].
Declercq, H ;
Van den Vreken, N ;
De Maeyer, E ;
Verbeeck, R ;
Schacht, E ;
De Ridder, L ;
Cornelissen, M .
BIOMATERIALS, 2004, 25 (05) :757-768
[5]   Nature's hierarchical materials [J].
Fratzl, Peter ;
Weinkamer, Richard .
PROGRESS IN MATERIALS SCIENCE, 2007, 52 (08) :1263-1334
[6]   In vitro assay of mineralized-tissue formation on titanium using fluorescent staining with calcein blue [J].
Goto, T ;
Kajiwara, H ;
Yoshinari, M ;
Fukuhara, E ;
Kobayashi, S ;
Tanaka, T .
BIOMATERIALS, 2003, 24 (22) :3885-3892
[7]   INVITRO MINERALIZATION OF OSTEOBLASTIC CELLS DERIVED FROM HUMAN BONE [J].
GOTOH, Y ;
HIRAIWA, K ;
NAGAYAMA, M .
BONE AND MINERAL, 1990, 8 (03) :239-250
[8]  
Harris LD, 1998, J BIOMED MATER RES, V42, P396, DOI 10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.3.CO
[9]  
2-P
[10]   Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications [J].
He, Chao ;
Shi, Zhen-Qiang ;
Ma, Lang ;
Cheng, Chong ;
Nie, Chuan-Xiong ;
Zhou, Mi ;
Zhao, Chang-Sheng .
JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (04) :592-602