Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity

被引:102
作者
Erickson, Erika [1 ,2 ]
Gado, Japheth E. [1 ,2 ]
Avilan, Luisana [3 ]
Bratti, Felicia [1 ,2 ]
Brizendine, Richard K. [1 ,2 ]
Cox, Paul A. [3 ]
Gill, Raj [3 ]
Graham, Rosie [3 ]
Kim, Dong-Jin [2 ,4 ]
Koenig, Gerhard [3 ]
Michener, William E. [1 ,2 ]
Poudel, Saroj [5 ]
Ramirez, Kelsey J. [1 ,2 ]
Shakespeare, Thomas J. [3 ]
Zahn, Michael [3 ]
Boyd, Eric S. [5 ]
Payne, Christina M. [6 ]
DuBois, Jennifer L. [2 ,4 ]
Pickford, Andrew R. [2 ,3 ]
Beckham, Gregg T. [1 ,2 ]
McGeehan, John E. [2 ,3 ,7 ]
机构
[1] Natl Renewable Energy Lab, Renewable Resources & Enabling Sci Ctr, Golden, CO 80401 USA
[2] BOTTLE Consortium, Golden, CO 80401 USA
[3] Univ Portsmouth, Sch Biol Sci, Ctr Enzyme Innovat, Portsmouth, Hants, England
[4] Montana State Univ, Dept Biochem, Bozeman, MT USA
[5] Montana State Univ, Dept Microbiol & Cell Biol, Bozeman, MT USA
[6] Natl Sci Fdn, Alexandria, VA USA
[7] World Plast Assoc, Fontvieille, Monaco
基金
美国国家科学基金会;
关键词
MULTIPLE SEQUENCE ALIGNMENT; PROTEIN-SEQUENCE; CRYSTAL-STRUCTURE; BRANCH COMPOST; PET; CUTINASE; BIODEGRADATION; DEGRADATION; HYDROLYSIS; PREDICTION;
D O I
10.1038/s41467-022-35237-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enzymatic deconstruction of poly(ethylene terephthalate) (PET) is under intense investigation, given the ability of hydrolase enzymes to depolymerize PET to its constituent monomers near the polymer glass transition temperature. To date, reported PET hydrolases have been sourced from a relatively narrow sequence space. Here, we identify additional PET-active biocatalysts from natural diversity by using bioinformatics and machine learning to mine 74 putative thermotolerant PET hydrolases. We successfully express, purify, and assay 51 enzymes from seven distinct phylogenetic groups; observing PET hydrolysis activity on amorphous PET film from 37 enzymes in reactions spanning pH from 4.5-9.0 and temperatures from 30-70 degrees C. We conduct PET hydrolysis time-course reactions with the best-performing enzymes, where we observe differences in substrate selectivity as function of PET morphology. We employed X-ray crystallography and AlphaFold to examine the enzyme architectures of all 74 candidates, revealing protein folds and accessory domains not previously associated with PET deconstruction. Overall, this study expands the number and diversity of thermotolerant scaffolds for enzymatic PET deconstruction.
引用
收藏
页数:15
相关论文
共 116 条
[1]   Surface Engineering of a Cutinase From Thermobifida Cellulosilytica for Improved Polyester Hydrolysis [J].
Acero, Enrique Herrero ;
Ribitsch, Doris ;
Dellacher, Anita ;
Zitzenbacher, Sabine ;
Marold, Annemarie ;
Steinkellner, Georg ;
Gruber, Karl ;
Schwab, Helmut ;
Guebitz, Georg M. .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (10) :2581-2590
[2]  
Acland A, 2013, NUCLEIC ACIDS RES, V41, pD8, DOI [10.1093/nar/gks1189, 10.1093/nar/gkx1095, 10.1093/nar/gkq1172]
[3]  
[Anonymous], 2017, BUSTER VERSION 2 10
[4]  
[Anonymous], 2018, STARANISO
[5]   SignalP 5.0 improves signal peptide predictions using deep neural networks [J].
Armenteros, Jose Juan Almagro ;
Tsirigos, Konstantinos D. ;
Sonderby, Casper Kaae ;
Petersen, Thomas Nordahl ;
Winther, Ole ;
Brunak, Soren ;
von Heijne, Gunnar ;
Nielsen, Henrik .
NATURE BIOTECHNOLOGY, 2019, 37 (04) :420-+
[6]   Characterization and engineering of a plastic-degrading aromatic polyesterase [J].
Austin, Harry P. ;
Allen, Mark D. ;
Donohoe, Bryon S. ;
Rorrer, Nicholas A. ;
Kearns, Fiona L. ;
Silveira, Rodrigo L. ;
Pollard, Benjamin C. ;
Dominick, Graham ;
Duman, Ramona ;
El Omari, Kamel ;
Mykhaylyk, Vitaliy ;
Wagner, Armin ;
Michener, William E. ;
Amore, Antonella ;
Skaf, Munir S. ;
Crowley, Michael F. ;
Thorne, Alan W. ;
Johnson, Christopher W. ;
Woodcock, H. Lee ;
McGeehan, John E. ;
Beckham, Gregg T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (19) :E4350-E4357
[7]  
Beech J. L., 2022, GREEN CHEM
[8]   Directed evolution of an efficient and thermostable PET depolymerase [J].
Bell, Elizabeth L. ;
Smithson, Ross ;
Kilbride, Siobhan ;
Foster, Jake ;
Hardy, Florence J. ;
Ramachandran, Saranarayanan ;
Tedstone, Aleksander A. ;
Haigh, Sarah J. ;
Garforth, Arthur A. ;
Day, Philip J. R. ;
Levy, Colin ;
Shaver, Michael P. ;
Green, Anthony P. .
NATURE CATALYSIS, 2022, 5 (08) :673-+
[9]   Low-N protein engineering with data-efficient deep learning [J].
Biswas, Surojit ;
Khimulya, Grigory ;
Alley, Ethan C. ;
Esvelt, Kevin M. ;
Church, George M. .
NATURE METHODS, 2021, 18 (04) :389-+
[10]   Particle Size Reduction of Poly(ethylene terephthalate) Increases the Rate of Enzymatic Depolymerization But Does Not Increase the Overall Conversion Extent [J].
Brizendine, Richard K. ;
Erickson, Erika ;
Haugen, Stefan J. ;
Ramirez, Kelsey J. ;
Miscall, Joel ;
Salvachua, Davinia ;
Pickford, Andrew R. . ;
Sobkowicz, Margaret J. ;
McGeehan, John E. ;
Beckham, Gregg T. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (28) :9131-9140