Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems

被引:64
作者
Sun, Juntao [1 ]
Chen, Haibo [1 ]
Nieto, Juan J. [2 ]
机构
[1] Cent S Univ, Dept Math, Changsha 410075, Hunan, Peoples R China
[2] Univ Santiago de Compostela, Dept Anal Matemat, Santiago De Compostela 15782, Spain
关键词
Homoclinic solutions; Hamiltonian systems; Subquadratic; Variational methods; PERIODIC-SOLUTIONS; ORBITS; MULTIPLICITY; EXISTENCE;
D O I
10.1016/j.jmaa.2010.06.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of infinitely many homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. By using the variant fountain theorem, we obtain a new criterion for guaranteeing that second-order Hamiltonian systems has infinitely many homoclinic solutions. Recent results from the literature are generalized and significantly improved. An example is also given in this paper to illustrate our main results. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 23 条
[1]  
Ambrosetti A., 1993, REND SEMIN MAT U PAD, V89, P177, DOI DOI 10.1016/0165-0114(92)90069-G
[2]   Multiple periodic solutions for Hamiltonian systems with not coercive potential [J].
Bonanno, Gabriele ;
Livrea, Roberto .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) :627-638
[3]   Three periodic solutions for perturbed second order Hamiltonian systems [J].
Cordaro, Giuseppe ;
Rao, Giuseppe .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) :780-785
[5]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[6]  
Mawhin J., 1989, CRITICAL POINT THEOR
[7]   Variational approach to impulsive differential equations [J].
Nieto, Juan J. ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :680-690
[8]  
Omana W., 1992, Diff. Int. Equ, V5, P1115
[9]   Existence of homoclinic solution for the second order Hamiltonian systems [J].
Ou, ZQ ;
Tang, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :203-213
[10]   Multiple homoclinic orbits for a class of Hamiltonian systems [J].
Paturel, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 12 (02) :117-143