A Novel Control Strategy for Improving the Performance of a Nearly Zero Energy Building

被引:13
作者
Tsioumas, Evangelos [1 ]
Jabbour, Nikolaos [1 ]
Koseoglou, Markos [1 ]
Mademlis, Christos [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Elect & Comp Engn, Dept Elect Energy, Thessaloniki 54124, Greece
关键词
Buildings; energy management system; energy storage system; genetic algorithm (GA); real time pricing; renewable energy sources (RES); smart grid; MANAGEMENT; DEMAND; SMART; OPTIMIZATION; ARCHITECTURE; APPLIANCES; ALGORITHM; COMFORT; SYSTEM;
D O I
10.1109/TPEL.2019.2921107
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with one of the most challenging problems in nearly zero energy buildings (nZEBs) of several multifaced and sometimes contradictory objectives that is the energy management. Specifically, aim of the paper is to propose an integrated control strategy (ICS) based on genetic algorithms that can provide an optimal balance between the objectives of energy saving, comfort of the building residents and maximum exploitation of the generated electric energy by the renewable energy sources through the proper utilization of a battery storage system (BSS). The above can be attained by optimizing a comprehensive cost function that considers the most important factors that may affect the performance of an nZEB, i.e., real-time electricity price, generated/consumed electric energy by each device, user preferences, state-of-charge, and energy price of the BSS, weather forecast and the nZEB's construction characteristics. The outcome of the ICS is the proper task scheduling and control of the electric loads as well as the regulation of the BSS operation so as the nZEB's performance is improved. The feasibility and effectiveness of the proposed ICS are verified in a hardware-in-the-loop system and selective experimental results are presented to demonstrate the operational improvements.
引用
收藏
页码:1513 / 1524
页数:12
相关论文
共 44 条
[1]   Autonomous Appliance Scheduling for Household Energy Management [J].
Adika, Christopher O. ;
Wang, Lingfeng .
IEEE TRANSACTIONS ON SMART GRID, 2014, 5 (02) :673-682
[2]  
[Anonymous], 2014, CLIM FIN CIT BUILD
[3]  
[Anonymous], 2013, NEARL ZER EN BUILD D
[4]  
[Anonymous], 2011, Smart (in-home) power scheduling for demand response on the smart grid. ISGT, DOI 10.1109/ISGT.2011.5759154
[5]  
[Anonymous], 2016, SYNTHESIS REPORT NAT
[6]   Optimal Smart Home Energy Management Considering Energy Saving and a Comfortable Lifestyle [J].
Anvari-Moghaddam, Amjad ;
Monsef, Hassan ;
Rahimi-Kian, Ashkan .
IEEE TRANSACTIONS ON SMART GRID, 2015, 6 (01) :324-332
[7]  
ASHRAE, 2005, ASHRAE HDB FUND
[8]  
Barbato A., 2011, 2011 IEEE Second International Conference on Smart Grid Communications (SmartGridComm 2011), P345, DOI 10.1109/SmartGridComm.2011.6102345
[9]   Optimal sizing study of hybrid wind/PV/diesel power generation unit [J].
Belfkira, Rachid ;
Zhang, Lu ;
Barakat, Georges .
SOLAR ENERGY, 2011, 85 (01) :100-110
[10]   Minimization of Building Energy Cost by Optimally Managing PV and Battery Energy Storage Systems [J].
Bonthu, Rama K. ;
Ha Pham ;
Aguilera, Ricardo P. ;
Ha, Quang P. .
2017 20TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2017,