Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries

被引:41
作者
Li, Chenghan [1 ]
Zhou, Shi [1 ]
Dai, Lijie [1 ]
Zhou, Xuanyi [1 ]
Zhang, Biao [1 ]
Chen, Liwen [1 ]
Zeng, Tao [1 ]
Liu, Yating [1 ]
Tang, Yongfu [2 ]
Jiang, Jie [1 ]
Huang, Jianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Peoples R China
[2] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTES; MECHANICAL-PROPERTIES; ORGANIC FRAMEWORK; ANODE; INTERFACES;
D O I
10.1039/d1ta04599g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) have attracted much attention due to their better safety and flexibility. However, the low ionic conductivity and narrow electrochemical window impede their applications in PEO-based solid-state batteries. Here we report the synthesis of a new SPE comprising PEO with 1 wt% fluoromethyl modified polyamine (PAN-FMP) as a filler that has high ionic conductivity and a wide electrochemical window. The LiFePO4 (LFP)/SPE/Li cell delivers an initial capacity of 124 mA h g(-1) at 1C with a capacity retention of 83% after 1000 cycles. Moreover, the electrochemical stability window of the SPE has been widened up to 4.8 V, which makes it compatible with high voltage cathodes such as LiNi0.8Co0.1Mn0.1O2 (NMC811). The enhanced ionic conductivity of the SPE originates from the PAN-FMP filler rich in -CF3 groups that interact with ether oxygen on the PEO segment and make ether oxygen form loose ion pairs with Li+ ions, thus inhibiting the rearrangement and crystallization of PEO and enhancing Li+ ion transport of the SPE. The long cycle life of the full cell is attributed to the formation of a LiF-rich-solid electrolyte interface (SEI) layer due to PAN-FMP promoting the defluorination of TFSI-. The LiF SEI layer enables uniform lithium metal deposition, and prevents the growth of lithium dendrites. The low-cost, simple preparation method and superior electrochemical performance of the SPE with an organic PAN-FMP filler thus provide a new strategy to enable high voltage and high energy density polymer based solid-state batteries.
引用
收藏
页码:24661 / 24669
页数:9
相关论文
共 50 条
  • [41] Polymer electrolytes and interfaces in solid-state lithium metal batteries
    Ding, Peipei
    Lin, Zhiyuan
    Guo, Xianwei
    Wu, Lingqiao
    Wang, Yongtao
    Guo, Hongxia
    Li, Liangliang
    Yu, Haijun
    MATERIALS TODAY, 2021, 51 : 449 - 474
  • [42] Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery
    Wang, Chen
    Wang, Tao
    Wang, Longlong
    Hu, Zhenglin
    Cui, Zili
    Li, Jiedong
    Dong, Shanmu
    Zhou, Xinhong
    Cui, Guanglei
    ADVANCED SCIENCE, 2019, 6 (22)
  • [43] A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries
    Wang, Qinglei
    Cui, Zili
    Zhou, Qian
    Shangguan, Xuehui
    Du, Xiaofan
    Dong, Shanmu
    Qiao, Lixin
    Huang, Suqi
    Liu, Xiaochen
    Tang, Kun
    Zhou, Xinhong
    Cui, Guanglei
    ENERGY STORAGE MATERIALS, 2020, 25 : 756 - 763
  • [44] Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries
    Zhang, Yang
    Zhang, Lei
    Guo, Peng
    Zhang, Chaoyan
    Ren, Xiaochuan
    Jiang, Zhen
    Song, Jianjun
    Shi, Chuan
    NANO RESEARCH, 2024, 17 (04) : 2663 - 2670
  • [45] Solid electrolyte interphases in lithium metal batteries
    Jagger, Ben
    Pasta, Mauro
    JOULE, 2023, 7 (10) : 2228 - 2244
  • [46] A Silatrane:Molecule-Based Crystal Composite Solid-State Electrolyte for All-Solid-State Lithium Batteries
    Navarro-Suarez, Adriana M.
    Johansson, Patrik
    BATTERIES & SUPERCAPS, 2019, 2 (11) : 956 - 962
  • [47] Rationally Designed PEGDA-LLZTO Composite Electrolyte for Solid-State Lithium Batteries
    Yu, Xingwen
    Liu, Yijie
    Goodenough, John B.
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) : 30703 - 30711
  • [48] Novel Self-Adaptive Electrolyte for High-Energy Solid-State Lithium Metal Batteries
    Zhang, Meixue
    Qi, Zhengpan
    Cai, Shen
    Li, Guojie
    Deng, Qibo
    Liu, Shan
    Wang, Ling
    Dai, Lei
    Hu, Ning
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (01): : 862 - 869
  • [49] Multifunctional Additive Enables a "5H" PEO Solid Electrolyte for High-Performance Lithium Metal Batteries
    Cheng, Zexiao
    Xiang, Jingwei
    Yuan, Lixia
    Liao, Yaqi
    Zhang, Yi
    Xu, Xiaoning
    Ji, Haijin
    Huang, Yunhui
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 21924 - 21931
  • [50] Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries
    Xue, Chuanjiao
    Zhang, Xue
    Wang, Shuo
    Li, Liangliang
    Nan, Ce-Wen
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24837 - 24844