Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries

被引:41
作者
Li, Chenghan [1 ]
Zhou, Shi [1 ]
Dai, Lijie [1 ]
Zhou, Xuanyi [1 ]
Zhang, Biao [1 ]
Chen, Liwen [1 ]
Zeng, Tao [1 ]
Liu, Yating [1 ]
Tang, Yongfu [2 ]
Jiang, Jie [1 ]
Huang, Jianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Peoples R China
[2] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTES; MECHANICAL-PROPERTIES; ORGANIC FRAMEWORK; ANODE; INTERFACES;
D O I
10.1039/d1ta04599g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) have attracted much attention due to their better safety and flexibility. However, the low ionic conductivity and narrow electrochemical window impede their applications in PEO-based solid-state batteries. Here we report the synthesis of a new SPE comprising PEO with 1 wt% fluoromethyl modified polyamine (PAN-FMP) as a filler that has high ionic conductivity and a wide electrochemical window. The LiFePO4 (LFP)/SPE/Li cell delivers an initial capacity of 124 mA h g(-1) at 1C with a capacity retention of 83% after 1000 cycles. Moreover, the electrochemical stability window of the SPE has been widened up to 4.8 V, which makes it compatible with high voltage cathodes such as LiNi0.8Co0.1Mn0.1O2 (NMC811). The enhanced ionic conductivity of the SPE originates from the PAN-FMP filler rich in -CF3 groups that interact with ether oxygen on the PEO segment and make ether oxygen form loose ion pairs with Li+ ions, thus inhibiting the rearrangement and crystallization of PEO and enhancing Li+ ion transport of the SPE. The long cycle life of the full cell is attributed to the formation of a LiF-rich-solid electrolyte interface (SEI) layer due to PAN-FMP promoting the defluorination of TFSI-. The LiF SEI layer enables uniform lithium metal deposition, and prevents the growth of lithium dendrites. The low-cost, simple preparation method and superior electrochemical performance of the SPE with an organic PAN-FMP filler thus provide a new strategy to enable high voltage and high energy density polymer based solid-state batteries.
引用
收藏
页码:24661 / 24669
页数:9
相关论文
共 50 条
  • [31] Vitrimer with dynamic imine bonds as a solid-state electrolyte for lithium metal batteries
    Yang, Seonghyeon
    Park, Seungjin
    Kim, Seongseop
    Kim, Sung-Kon
    MATERIALS TODAY ENERGY, 2024, 45
  • [32] A novel reinforced concrete-like composite solid-state electrolyte with enhanced performance for all-solid-state lithium batteries
    Ruan, Yanli
    Feng, Jinshuai
    Huang, Xiaoyu
    Cai, Haoyu
    Zheng, Haitao
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (08) : 2715 - 2726
  • [33] Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries
    Huang, Honglan
    Liu, Chao
    Liu, Ziya
    Wu, Yunyan
    Liu, Yifan
    Fan, Jinbo
    Zhang, Gen
    Xiong, Pan
    Zhu, Junwu
    ADVANCED POWDER MATERIALS, 2024, 3 (01):
  • [34] Flexible Asymmetric Organic-Inorganic Composite Solid-State Electrolyte Based on PI Membrane for Ambient Temperature Solid-State Lithium Metal Batteries
    Yang, Ruilu
    Zhang, Zheng
    Zhang, Qi
    Shi, Jian
    Kang, Shusen
    Fan, Yanchen
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [35] Layered deposition of porous composite electrodes for high-performance solid-state batteries at ambient temperatures
    Leung, P.
    Tang, L.
    Mohamed, M. R.
    Xu, Q.
    Shah, A. A.
    Wei, L.
    Liao, Q.
    JOURNAL OF POWER SOURCES, 2025, 641
  • [36] Graphitic carbon nitride assisted PVDF-HFP based solid electrolyte to realize high performance solid-state lithium metal batteries
    Li, Jiangnan
    Zhu, Lin
    Xie, Hongbo
    Zheng, Wenjing
    Zhang, Kan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 657
  • [37] Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries
    Xu, Kang
    Xu, Chao
    Jiang, Yujie
    Cai, Jinhai
    Ni, Jiaxi
    Lai, Chunyan
    IONICS, 2022, 28 (07) : 3243 - 3253
  • [38] Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries
    Subramani, Ramesh
    Pham, Minh-Nhat
    Lin, Yu-Hsing
    Hsieh, Chien-Te
    Lee, Yuh-Lang
    Jan, Jeng-Shiung
    Chiu, Chi-Cheng
    Teng, Hsisheng
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [39] Double-layer solid-state electrolyte enables compatible interfaces for high-performance lithium metal batteries
    Chen, Xiao
    Sun, Qiushi
    Xie, Jian
    Huang, Cheng
    Xu, Xiongwen
    Tu, Jian
    Zhao, Xinbing
    Zhu, Tiejun
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 91 - 99
  • [40] Composite Solid Electrolyte for High Voltage Solid-State Li-Metal Battery
    Balasubramaniam, Ramkumar
    Nam, Chan-Woo
    Aravindan, Vanchiappan
    Seol, Jae-chang
    Ajeya, Kanalli V.
    Jung, Ho-Young
    Lee, Yun-Sung
    CHEMELECTROCHEM, 2022, 9 (14)