Salicylic acid treatment of pea seeds induces its de novo synthesis

被引:42
作者
Szalai, Gabriella [1 ]
Horgosi, Szabina [1 ]
Soos, Vilmos [1 ]
Majlath, Imre [1 ]
Balazs, Ervin [1 ]
Janda, Tibor [1 ]
机构
[1] Hungarian Acad Sci, Agr Res Inst, H-2462 Martonvasar, Hungary
关键词
Antioxidant enzyme; Gene expression; o-Coumaric acid; Polyamines; Salicylic acid; POLYAMINE BIOSYNTHESIS; EXOGENOUS TREATMENT; CADMIUM TOXICITY; STRESS TOLERANCE; MAIZE; PLANT; ACCUMULATION; TEMPERATURE; DECREASES; INDUCTION;
D O I
10.1016/j.jplph.2010.07.029
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salicylic acid (SA), which is known as a signal molecule in the induction of defense mechanisms in plants, could be a promising compound for the reduction of stress sensitivity. The aim of the present work was to investigate the distribution of SA in young pea (Pisum sativum L) seedlings grown from seeds soaked in H-3-labeled SA solution before sowing, and to study the physiological changes induced by this seed treatment. The most pronounced changes in SA levels occurred in the epicotyl and the seeds. Radioactivity was detected only in the bound form of SA, the majority of which was localized in the seeds, and only a very low level of radioactivity was detected in the epicotyl. SA pre-treatment increased the expression of the chorismate synthase and isochorismate synthase genes in the epicotyl. Pre-soaking the seeds in SA increased the activities of some antioxidant enzymes, namely ascorbate peroxidase (EC 1.11.1.11) and guaiacol peroxidase (EC 1.11.1.7) and the level of ortho-hydroxycinnamic acid, but decreased the level of polyamines. These results suggest that the increased level of free and bound SA detected in plants growing from seeds soaked in SA solution before sowing is the product of de novo synthesis, rather than having been taken up and mobilized by the plants. (C) 2010 Elsevier GmbH. All rights reserved.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 54 条
[1]  
ADAM AL, 1995, PLANTA, V197, P240, DOI 10.1007/BF00202643
[2]   Evidence for a Role of Gibberellins in Salicylic Acid-Modulated Early Plant Responses to Abiotic Stress in Arabidopsis Seeds [J].
Alonso-Ramirez, Ana ;
Rodriguez, Dolores ;
Reyes, David ;
Angel Jimenez, Jesus ;
Nicolas, Gregorio ;
Lopez-Climent, Maria ;
Gomez-Cadenas, Aurelio ;
Nicolas, Carlos .
PLANT PHYSIOLOGY, 2009, 150 (03) :1335-1344
[3]   Exogenous treatment with Salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat [J].
Ananieva, EA ;
Christov, KN ;
Popova, LP .
JOURNAL OF PLANT PHYSIOLOGY, 2004, 161 (03) :319-328
[4]   Treatment with salicylic acid decreases the effects of paraquat on photosynthesis [J].
Ananieva, EA ;
Alexieva, VS ;
Popova, LP .
JOURNAL OF PLANT PHYSIOLOGY, 2002, 159 (07) :685-693
[5]   BIOSYNTHESIS OF PHENOLIC ACIDS IN TOMATO PLANTS INFECTED WITH AGROBACTERIUM-TUMEFACIENS [J].
CHADHA, KC ;
BROWN, SA .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1974, 52 (09) :2041-2047
[6]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886
[7]   Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings [J].
Dat, JF ;
Lopez-Delgado, H ;
Foyer, CH ;
Scott, IM .
PLANT PHYSIOLOGY, 1998, 116 (04) :1351-1357
[8]   ACTION OF PHENOLIC DERIVATIVES (ACETAMINOPHEN, SALICYLATE, AND 5-AMINOSALICYLATE) AS INHIBITORS OF MEMBRANE LIPID-PEROXIDATION AND AS PEROXYL RADICAL SCAVENGERS [J].
DINIS, TCP ;
MADEIRA, VMC ;
ALMEIDA, LM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 315 (01) :161-169
[9]   Response of barley grains to the interactive effect of salinity and salicylic acid [J].
El-Tayeb, MA .
PLANT GROWTH REGULATION, 2005, 45 (03) :215-224
[10]   Improved productivity and quality associated with salicylic acid application in greenhouse pepper [J].
Elwan, M. W. M. ;
El-Hamahmy, M. A. M. .
SCIENTIA HORTICULTURAE, 2009, 122 (04) :521-526