Di-Higgs production in the 4b channel and gravitational wave complementarity

被引:44
作者
Alves, Alexandre [1 ]
Goncalves, Dorival [2 ,3 ]
Ghosh, Tathagata [4 ]
Guo, Huai-Ke [5 ]
Sinha, Kuver [5 ]
机构
[1] Univ Fed Sao Paulo, UNIFESP, Dept Fis, POB 09972-270, Diadema, Brazil
[2] Univ Pittsburgh, PITT PACC, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA
[3] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA
[4] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA
[5] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
Beyond Standard Model; Cosmology of Theories beyond the SM; Higgs Physics;
D O I
10.1007/JHEP03(2020)053
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a complementarity study of gravitational waves and double Higgs production in the 4b channel, exploring the gauge singlet scalar extension of the SM. This new physics extension serves as a simplified benchmark model that realizes a strongly first-order electroweak phase transition necessary to generate the observed baryon asymmetry in the universe. In calculating the signal-to-noise ratio of the gravitational waves, we incorporate the effect of the recently discovered significant suppression of the gravitational wave signals from sound waves for strong phase transitions, make sure that supercooled phase transitions do complete and adopt a bubble wall velocity that is consistent with a successful electroweak baryogenesis by solving the velocity profiles of the plasma. The high-luminosity LHC sensitivity to the singlet scalar extension of the SM is estimated using a shape-based analysis of the invariant 4b mass distribution. We find that while the region of parameter space giving detectable gravitational waves is shrunk due to the new gravitational wave simulations, the qualitative complementary role of gravitational waves and collider searches remain unchanged.
引用
收藏
页数:20
相关论文
共 83 条
  • [1] Aaboud M, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2019)030
  • [2] Aad G, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2016)041
  • [3] Observation of Gravitational Waves from a Binary Black Hole Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Arain, M. A.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [4] Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities
    Allen, B
    Romano, JD
    [J]. PHYSICAL REVIEW D, 1999, 59 (10):
  • [5] Collider and gravitational wave complementarity in exploring the singlet extension of the standard model
    Alves, Alexandre
    Ghosh, Tathagata
    Guo, Huai-Ke
    Sinha, Kuver
    Vagie, Daniel
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
  • [6] Resonant di-Higgs production at gravitational wave benchmarks: a collider study using machine learning
    Alves, Alexandre
    Ghosh, Tathagata
    Guo, Huai-Ke
    Sinha, Kuver
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (12):
  • [7] The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
    Alwall, J.
    Frederix, R.
    Frixione, S.
    Hirschi, V.
    Maltoni, F.
    Mattelaer, O.
    Shao, H. -S.
    Stelzer, T.
    Torrielli, P.
    Zaro, M.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07):
  • [8] [Anonymous], 2016, J HIGH ENERGY PHYS, DOI DOI 10.1007/JHEP09(2016)151
  • [9] [Anonymous], ARXIV170709759
  • [10] [Anonymous], ARXIV180908242