Deep Active Learning Framework for Crowdsourcing-Enhanced Image Classification and Segmentation

被引:0
|
作者
Li, Zhiyao [1 ]
Gao, Xiaofeng [1 ]
Chen, Guihai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, MoE Key Lab Artificial Intelligence, Shanghai, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Crowdsourcing; Active learning; Image classification; Image segmentation; Deep learning; REGRESSION; QUERY;
D O I
10.1007/978-3-031-12423-5_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Crowdsourcing is a distributed problem solving model that encompasses many types of tasks, and from a machine learning perspective, the development of crowdsourcing provides a new way to obtain manually labeled data with the advantages of lower annotation costs and faster annotation speed very recently, especially in the field of computer vision for image classification and segmentation. Therefore, it is necessary to investigate how to combine machine learning algorithms with crowdsourcing effectively and cost-effectively. In this paper, we propose a deep active learning (AL) framework by combining active learning strategies, CNN models and real datasets, to test the effectiveness of the active learning strategies through multiple scenario comparisons. Experiment results demonstrate the effectiveness of our framework in reducing the data annotation burden. Moreover, Our findings suggest that the strength is often observed in the case of relatively large data scale.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 50 条
  • [21] Enhanced Retinal Image Based Segmentation and Deep Learning
    Salman, N. E. D. A. A. MoNTHER
    Daway, Hazim G.
    Jouda, JAMElA A.
    NONLINEAR OPTICS QUANTUM OPTICS-CONCEPTS IN MODERN OPTICS, 2025, 61 (1-2): : 99 - 111
  • [22] ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning
    Raczkowski, Lukasz
    Mozejko, Marcin
    Zambonelli, Joanna
    Szczurek, Ewa
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [23] Efficient image segmentation based on deep learning for mineral image classification
    Liu, Yang
    Zhang, Zelin
    Liu, Xiang
    Wang, Lei
    Xia, Xuhui
    ADVANCED POWDER TECHNOLOGY, 2021, 32 (10) : 3885 - 3903
  • [24] Rethinking deep active learning for medical image segmentation: A diffusion and angle-based framework
    Qu, Linhao
    Jin, Qiuye
    Fu, Kexue
    Wang, Manning
    Song, Zhijian
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [25] Active Deep Learning for Hyperspectral Image Classification With Uncertainty Learning
    Lei, Zhao
    Zeng, Yi
    Liu, Peng
    Su, Xiaohui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] An Integrated Framework with Deep Learning for Segmentation and Classification of Cancer Disease
    Bhuyan, Hemanta Kumar
    Ravi, Vinayakumar
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (02)
  • [27] A Novel Deep Learning Segmentation and Classification Framework for Leukemia Diagnosis
    Alzahrani, A. Khuzaim
    Alsheikhy, Ahmed
    Shawly, Tawfeeq
    Azzahrani, Ahmed
    Said, Yahia
    ALGORITHMS, 2023, 16 (12)
  • [28] Deep Active Learning for Joint Classification & Segmentation with Weak Annotator
    Belharbi, Soufiane
    Ben Ayed, Ismail
    McCaffrey, Luke
    Granger, Eric
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3337 - 3346
  • [29] Deep active learning models for imbalanced image classification
    Jin, Qiuye
    Yuan, Mingzhi
    Wang, Haoran
    Wang, Manning
    Song, Zhijian
    KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [30] A Review on Deep Learning Approaches to Image Classification and Object Segmentation
    Wu, Hao
    Liu, Qi
    Liu, Xiaodong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 575 - 597