A Hankel Matrix Acting on Spaces of Analytic Functions

被引:24
作者
Girela, Daniel [1 ]
Merchan, Noel [1 ]
机构
[1] Univ Malaga, Fac Ciencias, Anal Matemat, E-29071 Malaga, Spain
关键词
Hankel matrix; Generalized Hilbert operator; Hardy spaces; BMOA; The Bloch space; Conformally invariant spaces; Carleson measures; HILBERT MATRIX; BLOCH FUNCTIONS; HARDY-SPACES; BERGMAN; COEFFICIENTS; GROWTH; BOUNDEDNESS; OPERATORS; THEOREM; H-1;
D O I
10.1007/s00020-017-2409-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If mu is a positive Borel measure on the interval [0, 1) we let H-mu be the Hankel matrix H-mu = (mu(n, k))(n, k >= 0) with entries mu(n, k) = mu(n+k), where, for n = 0, 1, 2, ... , mu(n) denotes the moment of order n of mu. This matrix induces formally the operator H-mu(f)(z) = Sigma(infinity)(n = 0) (Sigma(infinity)(k = 0) mu(n), (k)a(k)) z(n) on the space of all analytic functions f(z) = Sigma(infinity)(k=0) a(k)z(k), in the unit disc D. This is a natural generalization of the classical Hilbert operator. In this paper we improve the results obtained in some recent papers concerning the action of the operators H-mu on Hardy spaces and on Mobius invariant spaces.
引用
收藏
页码:581 / 594
页数:14
相关论文
共 42 条
  • [1] The Eigenfunctions of the Hilbert Matrix
    Aleman, Alexandru
    Montes-Rodriguez, Alfonso
    Sarafoleanu, Andreea
    [J]. CONSTRUCTIVE APPROXIMATION, 2012, 36 (03) : 353 - 374
  • [2] ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
  • [3] Generalized Hilbert operators on weighted Bergman spaces
    Angel Pelaez, Jose
    Rattya, Jouni
    [J]. ADVANCES IN MATHEMATICS, 2013, 240 : 227 - 267
  • [4] [Anonymous], 1980, Bull. Lond. Math. Soc, DOI [10.1112/blms/12.3.207, DOI 10.1112/BLMS/12.3.207]
  • [5] [Anonymous], 2007, OPERATOR THEORY FUNC
  • [6] ARAZY J, 1985, J REINE ANGEW MATH, V363, P110
  • [7] AULASKARI R, 1994, PITMAN RES, V359, P136
  • [8] Taylor coefficients and mean growth of the derivative of Qp functions
    Aulaskari, R
    Girela, D
    Wulan, H
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (02) : 415 - 428
  • [9] Aulaskari R, 1996, ROCKY MT J MATH, V26, P485, DOI 10.1216/rmjm/1181072070
  • [10] Aulaskari R., 1995, Analysis, V15, P101