Realizing wide-temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation

被引:80
作者
Hou, Zhen [1 ]
Lu, Ziheng [2 ,3 ]
Chen, Qianwen [4 ]
Zhang, Biao [1 ,5 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Hung Hom, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[4] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[5] Hong Kong Polytech Univ, Res Inst Smart Energy, Guangdong Hong Kong Macao Joint Lab Photon Therma, Hung Hom, Hong Kong, Peoples R China
关键词
Zn metal anodes; Thermal instability; Dendrites growth; Parasitic reactions; Competitive-solvent; Wide-temperature; ION BATTERIES; HIGH-CAPACITY; ZINC ANODE; ELECTROLYTES; DENDRITE; PERFORMANCE; DEPOSITION; CHEMISTRY; GROWTH; LIFE;
D O I
10.1016/j.ensm.2021.08.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stable cycling of Zn metal anodes under thermal extremes remains a grand challenge with the corresponding failure mechanisms largely unexplored. Here, we unravel the origin of thermal instability during Zn plating/stripping. The low temperature renders deteriorative dendrites growth, while a high temperature causes aggravating parasitic reactions. Zn metal/electrolyte interface and electrolyte solvation chemistry are then regulated via the introduction of oligomer poly(ethylene glycol) dimethyl ether as a competitive-solvent into the aqueous electrolyte to circumvent these issues. Complementary experimental and theoretical studies demonstrate that the competitive-solvent shifts water-occupied interface into oligomer one through preferential Zn surface adsorption, enabling dendrite-free Zn morphologies. Furthermore, such solvent alters the electrolyte interaction by reconstructing oligomer/water hydrogen bonds and participating in the solvation sheath of Zn ions, which highly alleviates parasitic reactions. Consequently, Zn metal anodes deliver more than 1600 h Zn cyclic lifetime at all the tested temperatures of 0, 25 and 50 degrees C, over 10-fold enhancement than in pristine electrolytes. Application-wise, competitive-solvent suppresses the fast cathode dissolution because of highly reduced water activities and realizes the stable Zn/V2O5 full cells over a wide temperature range from -15 to 65 degrees C.
引用
收藏
页码:517 / 525
页数:9
相关论文
共 57 条
[1]   Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive [J].
Banik, Stephen J. ;
Akolkar, Rohan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :D519-D523
[2]   Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ELECTROCHIMICA ACTA, 2013, 89 :737-743
[3]   Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries [J].
Bayaguud, Aruuhan ;
Luo, Xiao ;
Fu, Yanpeng ;
Zhu, Changbao .
ACS ENERGY LETTERS, 2020, 5 (09) :3012-3020
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[5]   Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J].
Cai, Zhao ;
Ou, Yangtao ;
Wang, Jindi ;
Xiao, Run ;
Fu, Lin ;
Yuan, Zhu ;
Zhan, Renmin ;
Sun, Yongming .
ENERGY STORAGE MATERIALS, 2020, 27 :205-211
[6]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[7]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[8]   Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery [J].
Chen, Shigang ;
Lan, Rong ;
Humphreys, John ;
Tao, Shanwen .
ENERGY STORAGE MATERIALS, 2020, 28 :205-215
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte [J].
Cong, Jianlong ;
Shen, Xiu ;
Wen, Zhipeng ;
Wang, Xin ;
Peng, Longqing ;
Zeng, Jing ;
Zhao, Jinbao .
ENERGY STORAGE MATERIALS, 2021, 35 :586-594