Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds

被引:2
作者
Feng, Shuailing [1 ]
Huang, Wen [2 ]
Song, Lele [1 ]
Ying, Shihui [1 ]
Zeng, Tieyong [3 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient method; Hadamard manifolds; Manifold optimization; Convergence analysis; ALTERNATING MINIMIZATION; POINT METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s11590-021-01822-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the minimizing problem of the nonconvex and nonsmooth functions on Hadamard manifolds, and develop an improved proximal gradient method. First, by utilizing the geometric structure of non-positive curvature manifolds, we propose a monotone proximal gradient algorithm with fixed step size on Hadamard manifolds. Then, a convergence theorem of the proposed method has been established under the reasonable definition of proximal gradient mapping on manifolds. If the function further satisfies the Riemannian Kurdyka-Lojasiewicz (KL) property with an exponent, the local convergence rate is given. Finally, numerical experiments on a special Hadamard manifold, named symmetric positive definite matrix manifold, show the advantages of the proposed method.
引用
收藏
页码:2277 / 2297
页数:21
相关论文
共 50 条
  • [41] Approaching nonsmooth nonconvex minimization through second-order proximal-gradient dynamical systems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    Laszlo, Szilard Csaba
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (03) : 1291 - 1318
  • [42] Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
    Lin, Tianyi
    Zheng, Zeyu
    Jordan, Michael I.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [43] Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm
    Monjezi, N. Hoseini
    Nobakhtian, S.
    Pouryayevali, M. R.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (03) : 871 - 902
  • [44] A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems
    Sempere, Gregorio M.
    de Oliveira, Welington
    Royset, Johannes O.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (03)
  • [45] Alternating and Parallel Proximal Gradient Methods for Nonsmooth, Nonconvex Minimax: A Unified Convergence Analysis
    Cohen, Eyal
    Teboulle, Marc
    MATHEMATICS OF OPERATIONS RESEARCH, 2025, 50 (01) : 1 - 28
  • [46] Block-coordinate and incremental aggregated proximal gradient methods for nonsmooth nonconvex problems
    Latafat, Puya
    Themelis, Andreas
    Patrinos, Panagiotis
    MATHEMATICAL PROGRAMMING, 2022, 193 (01) : 195 - 224
  • [47] MGPROX: A NONSMOOTH MULTIGRID PROXIMAL GRADIENT METHOD WITH ADAPTIVE RESTRICTION FOR STRONGLY CONVEX OPTIMIZATION
    Ang, Andersen
    de Sterck, Hans
    Vavasis, Stephen
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (03) : 2788 - 2820
  • [48] A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONSMOOTH NONCONVEX FUNCTIONS WITH INEXACT INFORMATION
    Huang, M. I. N. G.
    Niu, Hui-min
    Lin, Si-da
    Yin, Zi-ran
    Yuan, Jin-long
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (12) : 8691 - 8708
  • [49] A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations
    Baraldi, Robert J. J.
    Kouri, Drew P. P.
    MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 559 - 598
  • [50] Two inertial proximal coordinate algorithms for a family of nonsmooth and nonconvex optimization problems
    Dang, Ya Zheng
    Sun, Jie
    Teo, Kok Lay
    AUTOMATICA, 2025, 171