Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds

被引:2
作者
Feng, Shuailing [1 ]
Huang, Wen [2 ]
Song, Lele [1 ]
Ying, Shihui [1 ]
Zeng, Tieyong [3 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient method; Hadamard manifolds; Manifold optimization; Convergence analysis; ALTERNATING MINIMIZATION; POINT METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s11590-021-01822-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the minimizing problem of the nonconvex and nonsmooth functions on Hadamard manifolds, and develop an improved proximal gradient method. First, by utilizing the geometric structure of non-positive curvature manifolds, we propose a monotone proximal gradient algorithm with fixed step size on Hadamard manifolds. Then, a convergence theorem of the proposed method has been established under the reasonable definition of proximal gradient mapping on manifolds. If the function further satisfies the Riemannian Kurdyka-Lojasiewicz (KL) property with an exponent, the local convergence rate is given. Finally, numerical experiments on a special Hadamard manifold, named symmetric positive definite matrix manifold, show the advantages of the proposed method.
引用
收藏
页码:2277 / 2297
页数:21
相关论文
共 50 条
  • [31] A class of modified accelerated proximal gradient methods for nonsmooth and nonconvex minimization problems
    Wang, Ting
    Liu, Hongwei
    NUMERICAL ALGORITHMS, 2024, 95 (01) : 207 - 241
  • [32] Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization
    Maryam Yashtini
    Journal of Global Optimization, 2022, 84 : 913 - 939
  • [33] Nonsmooth variational inequalities on Hadamard manifolds
    Ansari, Qamrul Hasan
    Islam, Monirul
    Yao, Jen-Chih
    APPLICABLE ANALYSIS, 2020, 99 (02) : 340 - 358
  • [34] Proximal Linearized Iteratively Reweighted Algorithms for Nonconvex and Nonsmooth Optimization Problem
    Yeo, Juyeb
    Kang, Myeongmin
    AXIOMS, 2022, 11 (05)
  • [35] A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems
    Long, Xian Jun
    Wang, Xiao Ting
    Li, Gao Xi
    Li, Geng Hua
    APPLIED NUMERICAL MATHEMATICS, 2024, 202 : 209 - 221
  • [36] A class of modified accelerated proximal gradient methods for nonsmooth and nonconvex minimization problems
    Ting Wang
    Hongwei Liu
    Numerical Algorithms, 2024, 95 : 207 - 241
  • [37] Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization
    Yashtini, Maryam
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (04) : 913 - 939
  • [38] Approximate bregman proximal gradient algorithm for relatively smooth nonconvex optimization
    Takahashi, Shota
    Takeda, Akiko
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (01) : 227 - 256
  • [39] A STOCHASTIC SEMISMOOTH NEWTON METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION
    Milzarek, Andre
    Xiao, Xiantao
    Cen, Shicong
    Wen, Zaiwen
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2916 - 2948
  • [40] Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization
    Li, Qunwei
    Zhou, Yi
    Liang, Yingbin
    Varshney, Pramod K.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70