Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds

被引:2
作者
Feng, Shuailing [1 ]
Huang, Wen [2 ]
Song, Lele [1 ]
Ying, Shihui [1 ]
Zeng, Tieyong [3 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient method; Hadamard manifolds; Manifold optimization; Convergence analysis; ALTERNATING MINIMIZATION; POINT METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s11590-021-01822-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the minimizing problem of the nonconvex and nonsmooth functions on Hadamard manifolds, and develop an improved proximal gradient method. First, by utilizing the geometric structure of non-positive curvature manifolds, we propose a monotone proximal gradient algorithm with fixed step size on Hadamard manifolds. Then, a convergence theorem of the proposed method has been established under the reasonable definition of proximal gradient mapping on manifolds. If the function further satisfies the Riemannian Kurdyka-Lojasiewicz (KL) property with an exponent, the local convergence rate is given. Finally, numerical experiments on a special Hadamard manifold, named symmetric positive definite matrix manifold, show the advantages of the proposed method.
引用
收藏
页码:2277 / 2297
页数:21
相关论文
共 50 条
  • [21] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Bolte, Jerome
    Sabach, Shoham
    Teboulle, Marc
    MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) : 459 - 494
  • [22] ALTERNATING STRUCTURE-ADAPTED PROXIMAL GRADIENT DESCENT FOR NONCONVEX NONSMOOTH BLOCK-REGULARIZED PROBLEMS
    Nikolova, Mila
    Tan, Pauline
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (03) : 2053 - 2078
  • [23] A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems
    Liu, Hongwei
    Wang, Ting
    Liu, Zexian
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (04) : 863 - 897
  • [24] On the convergence of a linesearch based proximal-gradient method for nonconvex optimization
    Bonettini, S.
    Loris, I.
    Porta, F.
    Prato, M.
    Rebegoldi, S.
    INVERSE PROBLEMS, 2017, 33 (05)
  • [25] A proximal bundle algorithm for nonsmooth optimization on Riemannian manifolds
    Hoseini Monjezi, Najmeh
    Nobakhtian, Soghra
    Pouryayevali, Mohamad Reza
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (01) : 293 - 325
  • [26] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    Hare, W.
    Sagastizabal, C.
    Solodov, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) : 1 - 28
  • [27] Inexact proximal point algorithm for quasiconvex optimization problems on Hadamard manifolds
    Azami, Shahroud
    Barani, Ali
    Oveisiha, Morteza
    OPTIMIZATION, 2024, 73 (01) : 89 - 112
  • [28] Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
    Zhang, Xiaoya
    Barrio, Roberto
    Angeles Martinez, M.
    Jiang, Hao
    Cheng, Lizhi
    IEEE ACCESS, 2019, 7 : 126515 - 126529
  • [29] Momentum-based variance-reduced stochastic Bregman proximal gradient methods for nonconvex nonsmooth optimization
    Liao, Shichen
    Liu, Yan
    Han, Congying
    Guo, Tiande
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [30] On Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifolds
    Bhooshan Upadhyay, Balendu
    Treanta, Savin
    Mishra, Priyanka
    OPTIMIZATION, 2023, 72 (12) : 3081 - 3100