Network-Based Pipeline for Analyzing MS Data: An Application toward Liver Cancer

被引:32
作者
Bin Goh, Wilson Wen [1 ,2 ]
Lee, Yie Hou [3 ]
Zubaidah, Ramdzan M. [4 ]
Jin, Jingjing [1 ]
Dong, Difeng [1 ]
Lin, Qingsong [5 ]
Chung, Maxey C. M. [5 ,6 ]
Wong, Limsoon [1 ,7 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
[2] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
[3] Singapore MIT Alliance Res & Technol, Singapore, Singapore
[4] McGill Univ, Rosalind & Morris Goodman Canc Ctr, Montreal, PQ H3A 2T5, Canada
[5] Natl Univ Singapore, Dept Biol Sci, Singapore 117417, Singapore
[6] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore 117417, Singapore
[7] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Pathol, Singapore 117417, Singapore
基金
新加坡国家研究基金会; 英国惠康基金;
关键词
HCC (hepatocellular carcinoma); proteomics; protein networks; liver cancer; bioinformatics; systems biology; HEPATOCELLULAR-CARCINOMA TISSUES; INTERACTING PROTEINS; PROTEOME ANALYSIS; DISCOVERY; EXPRESSION; DIP; IDENTIFICATION; INTACT;
D O I
10.1021/pr1010845
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Current limitations in proteome analysis by high. throughput mass spectrometry (MS) approaches have sometimes led to incomplete (or inconclusive) data sets being published or unpublished. In this work, we used an iTRAQ reference data on hepatocellular carcinoma (HCC) to design a two-stage functional analysis pipeline to widen and improve the proteome coverage and, subsequently, to unveil the molecular changes that occur during HCC progression in human tumorous tissue. The first involved functional cluster analysis by incorporating an expansion step on a cleaned integrated network. The second used an in-house developed pathway database where recovery of shared neighbors was followed by pathway enrichment analysis. In the original MS data set, over 500 proteins were detected from the tumors of 12 male patients, but in this paper we reported an additional 1000 proteins after application of our bioinformatics pipeline. Through an integrative effort of network cleaning, community finding methods, and network analysis, we also uncovered several biologically interesting clusters implicated in HCC. We established that HCC transition from a moderate to poor stage involved densely connected clusters that comprised of PCNA, XRCC5, XRCC6, PARP1, PRKDC, and WRN. From our pathway enrichment analyses, it appeared that the HCC moderate stage, unlike the poor stage, is enriched in proteins involved in immune responses, thus suggesting the acquisition of immuno-evasion. Our strategy illustrates how an original oncoproteome could be expanded to one of a larger dynamic range where current technology limitations prevent/limit comprehensive proteome characterization.
引用
收藏
页码:2261 / 2272
页数:12
相关论文
共 48 条
[31]   Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry [J].
Ralhan, Ranju ;
Desouza, Leroi V. ;
Matta, Ajay ;
Tripathi, Satyendra Chandra ;
Ghanny, Shaun ;
Gupta, Siddartha Datta ;
Bahadur, Sudhir ;
Siu, K. W. Michael .
MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (06) :1162-1173
[32]   Mining gene functional networks to improve mass-spectrometry-based protein identification [J].
Ramakrishnan, Smriti R. ;
Vogel, Christine ;
Kwon, Taejoon ;
Penalva, Luiz O. ;
Marcotte, Edward M. ;
Miranker, Daniel P. .
BIOINFORMATICS, 2009, 25 (22) :2955-2961
[33]   Towards a proteome-scale map of the human protein-protein interaction network [J].
Rual, JF ;
Venkatesan, K ;
Hao, T ;
Hirozane-Kishikawa, T ;
Dricot, A ;
Li, N ;
Berriz, GF ;
Gibbons, FD ;
Dreze, M ;
Ayivi-Guedehoussou, N ;
Klitgord, N ;
Simon, C ;
Boxem, M ;
Milstein, S ;
Rosenberg, J ;
Goldberg, DS ;
Zhang, LV ;
Wong, SL ;
Franklin, G ;
Li, SM ;
Albala, JS ;
Lim, JH ;
Fraughton, C ;
Llamosas, E ;
Cevik, S ;
Bex, C ;
Lamesch, P ;
Sikorski, RS ;
Vandenhaute, J ;
Zoghbi, HY ;
Smolyar, A ;
Bosak, S ;
Sequerra, R ;
Doucette-Stamm, L ;
Cusick, ME ;
Hill, DE ;
Roth, FP ;
Vidal, M .
NATURE, 2005, 437 (7062) :1173-1178
[34]   Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies [J].
Searle, Brian C. ;
Turner, Mark ;
Nesvizhskii, Alexey I. .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (01) :245-253
[35]   MOLECULAR NETWORKS IN MICROARRAY ANALYSIS [J].
Sivachenko, Andrey Y. ;
Yuryev, Anton ;
Daraselia, Nikolai ;
Mazo, Ilya .
JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2007, 5 (2B) :429-456
[36]   Consistency, comprehensiveness, and compatibility of pathway databases [J].
Soh, Donny ;
Dong, Difeng ;
Guo, Yike ;
Wong, Limsoon .
BMC BIOINFORMATICS, 2010, 11
[37]   BioGRID: a general repository for interaction datasets [J].
Stark, Chris ;
Breitkreutz, Bobby-Joe ;
Reguly, Teresa ;
Boucher, Lorrie ;
Breitkreutz, Ashton ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D535-D539
[38]   A human protein-protein interaction network:: A resource for annotating the proteome [J].
Stelzl, U ;
Worm, U ;
Lalowski, M ;
Haenig, C ;
Brembeck, FH ;
Goehler, H ;
Stroedicke, M ;
Zenkner, M ;
Schoenherr, A ;
Koeppen, S ;
Timm, J ;
Mintzlaff, S ;
Abraham, C ;
Bock, N ;
Kietzmann, S ;
Goedde, A ;
Toksöz, E ;
Droege, A ;
Krobitsch, S ;
Korn, B ;
Birchmeier, W ;
Lehrach, H ;
Wanker, EE .
CELL, 2005, 122 (06) :957-968
[39]   Quantitative Proteomic Profiling of Matched Normal and Tumor Breast Tissues [J].
Sutton, Chris W. ;
Rustogi, Nitin ;
Gurkan, Cemal ;
Scally, Andrew ;
Loizidou, Maria A. ;
Hadjisavvas, Andreas ;
Kyriacou, Kyriacos .
JOURNAL OF PROTEOME RESEARCH, 2010, 9 (08) :3891-3902
[40]   Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells [J].
Tan, Hwee Tong ;
Tan, Sandra ;
Lin, Qingsong ;
Lim, Teck Kwang ;
Hew, Choy Leong ;
Chung, Maxey C. M. .
MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (06) :1174-1185