Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering

被引:38
|
作者
Hayati, Amir Nemati [1 ]
Rezaie, H. R. [1 ]
Hosseinalipour, S. M. [1 ]
机构
[1] Iran Univ Sci & Technol, Dept Met & Mat Engn, Tehran, Iran
关键词
Poly(3-hydroxybutyrate); Nano-hydroxyapatite; Composite scaffolds; Bone tissue engineering; IN-VITRO DEGRADATION; POLYMER; FABRICATION; MATRICES;
D O I
10.1016/j.matlet.2010.11.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Poly(3-hydroxybutyrate)/nano-hydroxyapatite (PHB/nHA) composite scaffolds were fabricated via powder mixing, compression moulding, and particle leaching technique. The scaffolds had high porosity with interconnected porous architecture, a favorable structure for cell attachment and new bone tissue ingrowth. A homogeneous dispersion and a uniform distribution of HA nanoparticles in the polymer matrix were obtained. The scaffolds exhibited improved compressive modulus and compressive strength, which were all in the range of compressive modulus and compressive strength of cancellous bone. In addition, the use of toxic organic solvents was eliminated. Thus, the fabricated PHB/nHA composite scaffolds tend to be promising for application in bone tissue engineering. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:736 / 739
页数:4
相关论文
共 50 条
  • [1] Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications
    Hayati, Amir Nemati
    Hosseinalipour, S. M.
    Rezaie, H. R.
    Shokrgozar, M. A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (03): : 416 - 422
  • [2] Preparation and evaluation of nano-hydroxyapatite/β-tricalciumphosphate/chitosan composite scaffolds for bone tissue engineering
    Lin, T.
    Zhang, S. M.
    Li, J.
    Zhang, L.
    Liu, Y. H.
    Xue, Y. H.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 463 - 466
  • [3] Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering
    Nukavarapu, Syam P.
    Kumbar, Sangamesh G.
    Brown, Justin L.
    Krogman, Nicholas R.
    Weikel, Arlin L.
    Hindenlang, Mark D.
    Nair, Lakshmi S.
    Allcock, Harry R.
    Laurencin, Cato T.
    BIOMACROMOLECULES, 2008, 9 (07) : 1818 - 1825
  • [4] Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications
    Misra, Superb K.
    Ansari, Tahera I.
    Valappil, Sabeel P.
    Mohn, Dirk
    Philip, Sheryl E.
    Stark, Wendelin J.
    Roy, Ipsita
    Knowles, Jonathan C.
    Salih, Vehid
    Boccaccini, Aldo R.
    BIOMATERIALS, 2010, 31 (10) : 2806 - 2815
  • [5] A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    Kong, Lijun
    Gao, Yuan
    Lu, Guangyuan
    Gong, Yandao
    Zhao, Nanming
    Zhang, Xiufang
    EUROPEAN POLYMER JOURNAL, 2006, 42 (12) : 3171 - 3179
  • [6] Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering
    Wei, GB
    Ma, PX
    BIOMATERIALS, 2004, 25 (19) : 4749 - 4757
  • [7] Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering
    Mo, Xiaojing
    Zhang, Dianjian
    Liu, Keda
    Zhao, Xiaoxi
    Li, Xiaoming
    Wang, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [8] Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering
    Wang, Huanan
    Li, Yubao
    Zuo, Yi
    Li, Jihua
    Ma, Sansi
    Cheng, Lin
    BIOMATERIALS, 2007, 28 (22) : 3338 - 3348
  • [9] Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation
    Ren, Jie
    Zhao, Peng
    Ren, Tianbin
    Gu, Shuying
    Pan, Kefeng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2008, 19 (03) : 1075 - 1082
  • [10] Poly (d,l-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation
    Jie Ren
    Peng Zhao
    Tianbin Ren
    Shuying Gu
    Kefeng Pan
    Journal of Materials Science: Materials in Medicine, 2008, 19 : 1075 - 1082