Self-Paced Multi-View Clustering via a Novel Soft Weighted Regularizer

被引:3
|
作者
Huang, Zongmo [1 ]
Ren, Yazhou [1 ,2 ]
Liu, Wenli [1 ]
Pu, Xiaorong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] UESTC Guangdong, Inst Elect & Informat Engn, Dongguan 523808, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Multi-view clustering; self-paced learning; soft weighting; KERNEL;
D O I
10.1109/ACCESS.2019.2954559
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-view clustering (MVC), which can exploit complementary information of different views to enhance the clustering performance, has attracted people's increasing attentions in recent years. However, existing multi-view clustering methods typically solve a non-convex problem, therefore are easily stuck into bad local minima. In addition, noisy data and outliers affect the clustering process negatively. In this paper, we propose self-paced multi-view clustering via a novel soft weighted regularizer (SPMVC) to address these issues. Specifically, SPMVC progressively selects samples to train the MVC model from simplicity to complexity in a self-paced manner. A novel soft weighted regularizer is proposed to further reduce the negative impact of outliers and noisy data. Experimental results on real-world data sets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:168629 / 168636
页数:8
相关论文
共 50 条
  • [41] Semantic Weighted Multi-View Clustering for Web Content
    Gong, Xiaolong
    Huang, Linpeng
    Luo, Tiancheng
    Ma, Zhiyi
    IEEE ACCESS, 2019, 7 : 128097 - 128113
  • [42] Tensor Multi-Elastic Kernel Self-Paced Learning for Time Series Clustering
    Tang, Yongqiang
    Xie, Yuan
    Yang, Xuebing
    Niu, Jinghao
    Zhang, Wensheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (03) : 1223 - 1237
  • [43] Weighted Multi-view Clustering Based on Internal Evaluation
    Xu, Haoqi
    Hou, Jian
    Yuan, Huaqiang
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 215 - 227
  • [44] Multi-view Fuzzy Clustering with Weighted Attributes and Views
    Gothania, Neelesh
    Kumar, Sunil
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 353 - 359
  • [45] Kernel-based Weighted Multi-view Clustering
    Tzortzis, Grigorios
    Likas, Aristidis
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 675 - 684
  • [46] Weighted Self-Paced Learning with Belief Functions
    Zhang, Shixing
    Han, Deqiang
    Dezert, Jean
    Yang, Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [47] View-Weighted Multi-view K-means Clustering
    Yu, Hong
    Lian, Yahong
    Li, Shu
    Chen, JiaXin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 305 - 312
  • [48] Auto-weighted multi-view clustering with the use of an augmented view
    Cai, Bing
    Lu, Gui-Fu
    Wan, Jiashan
    Du, Yangfan
    SIGNAL PROCESSING, 2024, 215
  • [49] Self-paced deep clustering with learning loss
    Zhang, Kai
    Song, Chengyun
    Qiu, Lianpeng
    PATTERN RECOGNITION LETTERS, 2023, 171 : 8 - 14
  • [50] Active Clustering Ensemble With Self-Paced Learning
    Zhou, Peng
    Sun, Bicheng
    Liu, Xinwang
    Du, Liang
    Li, Xuejun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12186 - 12200