SINGULAR VALUE AND NORM INEQUALITIES OF DAVIDSON-POWER TYPE

被引:8
作者
Audeh, Wasim [1 ]
机构
[1] Petra Univ, Dept Math, Amman, Jordan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 03期
关键词
Concave function; positive semidefinite matrix; singular value; unitarily invariant norm; inequality; SUMS;
D O I
10.7153/jmi-2021-15-88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A, B, X and Y be n x n complex matrices such that A and B are positive semidefinite, then parallel to AX + YB parallel to <= 1/4(parallel to W-1 parallel to + parallel to W-2 parallel to + W-4), where W-1 = A + A(1/2) vertical bar X*vertical bar(2)A(1/2), W-2 = B + B-1/2 vertical bar X*vertical bar B-2(1/2), and W-4 = (root parallel to W-1 parallel to -parallel to W-2 parallel to)(2) + 4 parallel to W-3 parallel to(2). Multiple results are given in this paper.
引用
收藏
页码:1311 / 1320
页数:10
相关论文
共 15 条
[1]  
AUDEH W, ADV OPER THEORY, V6
[2]   Singular value inequalities and applications [J].
Audeh, Wasim .
POSITIVITY, 2021, 25 (03) :843-852
[4]   Generalizations for singular value inequalities of operators [J].
Audeh, Wasim .
ADVANCES IN OPERATOR THEORY, 2020, 5 (02) :371-381
[5]   Singular value inequalities for compact operators [J].
Audeh, Wasim ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (10) :2516-2522
[6]   ON THE SINGULAR-VALUES OF A PRODUCT OF OPERATORS [J].
BHATIA, R ;
KITTANEH, F .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :272-277
[7]  
Bhatia R., 1997, MATRIX ANAL
[8]  
Bourin JC, 2010, P AM MATH SOC, V138, P495
[9]  
DAVIDSON KR, 1986, J REINE ANGEW MATH, V368, P43
[10]   Inequalities for sums and products of operators [J].
Hirzallah, O .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 407 :32-42