Robust Passivity-Based Control of Underactuated Systems via Neural Approximators and Bayesian Inference

被引:3
作者
Ashenafi, Nardos Ayele [1 ]
Sirichotiyakul, Wankun [1 ]
Satici, Aykut C. [2 ]
机构
[1] Boise State Univ, Elect & Comp Engn Dept, Boise, ID 83725 USA
[2] Boise State Univ, Mech & Biomed Engn Dept, Boise, ID 83725 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
关键词
Bayes methods; Neural networks; Uncertainty; Trajectory; Robustness; Training; Heuristic algorithms; Robotics; robust control; machine learning; nonlinear control systems;
D O I
10.1109/LCSYS.2022.3184756
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inspired by passivity-based control (PBC) techniques, we propose a data-driven approach in order to learn a neural net parameterized storage function of underactuated mechanical systems. First, the PBC problem is cast as an optimization problem that searches for point estimates of the neural net parameters. Then, we improve the robustness properties of this deterministic framework against system parameter uncertainties and measurement error by injecting techniques from Bayesian inference. In the Bayesian framework, the neural net parameters are samples drawn from a posterior distribution learned via Variational Inference. We demonstrate the performance of the deterministic and Bayesian trainings on the swing-up task of an inertia wheel pendulum in simulation and real-world experiments.
引用
收藏
页码:3457 / 3462
页数:6
相关论文
共 21 条
[1]   Learning dexterous in-hand manipulation [J].
Andrychowicz, Marcin ;
Baker, Bowen ;
Chociej, Maciek ;
Jozefowicz, Rafal ;
McGrew, Bob ;
Pachocki, Jakub ;
Petron, Arthur ;
Plappert, Matthias ;
Powell, Glenn ;
Ray, Alex ;
Schneider, Jonas ;
Sidor, Szymon ;
Tobin, Josh ;
Welinder, Peter ;
Weng, Lilian ;
Zaremba, Wojciech .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (01) :3-20
[2]  
[Anonymous], 2015, Technical Report
[3]  
Ashenafi N. A., 2022, ARXIV220506896
[4]  
Bishop CM., 2016, Pattern Recognition and Machine Learning, V4
[5]   A Hybrid Motion Classification Approach for EMG-Based Human-Robot Interfaces Using Bayesian and Neural Networks [J].
Bu, Nan ;
Okamoto, Masaru ;
Tsuji, Toshio .
IEEE TRANSACTIONS ON ROBOTICS, 2009, 25 (03) :502-511
[6]  
Chen RTQ, 2018, Neural ordinary differential equations, V31
[7]  
Cohen S, 2016, Synthesis Lectures on Human Language Technologies, V9, P1, DOI 10.2200/s00719ed1v01y201605hlt035
[8]  
Gal Yarin., 2016, P DAT EFF MACH LEARN, V4, page, P25
[9]  
Heess N., 2017, EMERGENCE LOCOMOTION
[10]  
Jospin L.V., 2020, ARXIV200706823