Axial misfit stress relaxation in core-shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops

被引:7
|
作者
Krasnitckii, S. A. [1 ,2 ,3 ]
Smirnov, A. M. [3 ]
Gutkin, M. Yu [1 ,2 ,3 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Polytekhn Skaya 29, St Petersburg 195251, Russia
[2] Russian Acad Sci, Inst Problems Mech Engn, Bolshoi 61, St Petersburg 199178, Russia
[3] ITMO Univ, Kronverkskii Pr 49, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
STRAIN RELAXATION; INITIAL-STAGES; NANOSTRUCTURES; SEMICONDUCTOR; MECHANISMS; GENERATION; EDGE; DEFECTS; GROWTH;
D O I
10.1007/s10853-020-04401-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The theoretical model of axial misfit stress relaxation in polyhedral core-shell nanowires through the nucleation of prismatic dislocation loops is suggested. Different sites of dislocation nucleation in the nanowires with hexagonal, square and triangular shapes of the core cross section are considered. The energy change caused by the dislocation nucleation is calculated for every case under the assumption that the shell thickness is much smaller than the core size. The corresponding critical values of the misfit parameter for the dislocation nucleation are determined and compared with each other. According to this comparison, the most favorable sites in the core-shell nanowires and the optimal shapes of the dislocation loops are defined. Nanowires with round, hexagonal, square and triangle shapes of the core cross section are ranged with respect to their stability to dislocation loop nucleation.
引用
收藏
页码:9198 / 9210
页数:13
相关论文
共 30 条
  • [1] Axial misfit stress relaxation in core–shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops
    S. A. Krasnitckii
    A. M. Smirnov
    M. Yu. Gutkin
    Journal of Materials Science, 2020, 55 : 9198 - 9210
  • [2] AXIAL MISFIT STRESS RELAXATION IN CORE-SHELL NANOWIRES WITH HEXAGONAL CORE VIA NUCLEATION OF RECTANGULAR PRISMATIC DISLOCATION LOOPS
    Krasnitckii, S. A.
    Smirnov, A. M.
    Mynbaev, K. D.
    Zhigilei, L., V
    Gutkin, M. Yu
    MATERIALS PHYSICS AND MECHANICS, 2019, 42 (06): : 776 - 783
  • [3] Misfit stress relaxation in composite core-shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops
    Krasnitckii, S. A.
    Kolomoetc, D. R.
    Smirnov, A. M.
    Gutkin, M. Yu
    19TH RUSSIAN YOUTH CONFERENCE ON PHYSICS OF SEMICONDUCTORS AND NANOSTRUCTURES, OPTO- AND NANOELECTRONICS, 2018, 993
  • [4] Periodic array of misfit dislocation loops and stress relaxation in core-shell nanowires
    Chernakov, Anton P.
    Kolesnikova, Anna L.
    Gutkin, Mikhail Yu
    Romanov, Alexey E.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2020, 156
  • [5] Misfit stresses and their relaxation by misfit dislocation loops in core-shell nanoparticles with truncated spherical cores
    Gutkin, Mikhail Yu
    Kolesnikova, Anna L.
    Mikheev, Dmitry S.
    Romanov, Alexey E.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2020, 81
  • [6] Misfit dislocation loops in composite core-shell nanoparticles
    Gutkin, M. Yu.
    Kolesnikova, A. L.
    Krasnitsky, S. A.
    Romanov, A. E.
    PHYSICS OF THE SOLID STATE, 2014, 56 (04) : 723 - 730
  • [7] Misfit dislocation loops in composite core-shell nanoparticles
    M. Yu. Gutkin
    A. L. Kolesnikova
    S. A. Krasnitsky
    A. E. Romanov
    Physics of the Solid State, 2014, 56 : 723 - 730
  • [8] Misfit dislocation loops in hollow core-shell nanoparticles
    Gutkin, M. Yu.
    Kolesnikova, A. L.
    Krasnitckii, S. A.
    Romanov, A. E.
    Shalkovskii, A. G.
    SCRIPTA MATERIALIA, 2014, 83 : 1 - 4
  • [9] Initial stages of misfit stress relaxation in composite nanostructures through generation of rectangular prismatic dislocation loops
    Gutkin, M. Yu.
    Smirnov, A. M.
    ACTA MATERIALIA, 2015, 88 : 91 - 101
  • [10] Initial stages of misfit stress relaxation by rectangular prismatic dislocation loops in composite nanostructures
    Gutkin, M. Yu.
    Smirnov, A. M.
    1ST INTERNATIONAL SCHOOL AND CONFERENCE SAINT-PETERSBURG OPEN 2014 ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES, 2014, 541