Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids

被引:75
|
作者
Li, Jing [1 ]
D'Avino, Gabriele [2 ]
Duchemin, Ivan [3 ]
Beljonne, David [2 ]
Blase, Xavier [1 ]
机构
[1] Grenoble Alpes Univ, CNRS, Inst NEEL, F-38042 Grenoble, France
[2] Univ Mons, Lab Chem Novel Mat, Pl Parc 20, BE-7000 Mons, Hainaut, Belgium
[3] UJF, CEA, SP2M, INAC,L Sim, F-38054 Grenoble 09, France
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2016年 / 7卷 / 14期
关键词
BASIS-SETS; ORGANIC SEMICONDUCTORS; CHARGE REDISTRIBUTION; CRYSTAL-STRUCTURE; EXCITED-STATES; ENERGY; EXCITATIONS; ENERGETICS; APPROXIMATION; BENCHMARKING;
D O I
10.1021/acs.jpclett.6b01302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an original hybrid QM/MM scheme merging the many-body Green's function GW formalism with classical discrete polarizable models and its application to the paradigmatic case of a pentacene crystal. Our calculated transport gap is found to be in excellent agreement with reference periodic bulk GW calculations, together with properly parametrized classical microelectrostatic calculations, and with photoionization measurements at crystal surfaces. More importantly, we prove that the gap is insensitive to the partitioning of pentacene molecules in QM and MM subsystems, as a result of the mutual compensation of quantum and classical polarizabilities, clarifying the relation between polarization energy and delocalization. The proposed hybrid method offers a computationally attractive strategy to compute the full spectrum of charged excitations in complex molecular environments, accounting for both QM and MM contributions to the polarization energy, a crucial requirement in the limit of large QM subsystems.
引用
收藏
页码:2814 / 2820
页数:7
相关论文
共 50 条
  • [21] Electronic structure of palladium in the presence of many-body effects
    Oestlin, A.
    Appelt, W. H.
    Di Marco, I.
    Sun, W.
    Radonjic, M.
    Sekania, M.
    Vitos, L.
    Tjernberg, O.
    Chioncel, L.
    PHYSICAL REVIEW B, 2016, 93 (15)
  • [23] DIAGRAMMATIC MANY-BODY PERTURBATION-THEORY OF ATOMIC AND MOLECULAR ELECTRONIC-STRUCTURE
    WILSON, S
    COMPUTER PHYSICS REPORTS, 1985, 2 (08): : 389 - 480
  • [24] Many-body effects on bandwidths in ionic, noble gas, and molecular solids
    Shirley, EL
    PHYSICAL REVIEW B, 1998, 58 (15): : 9579 - 9583
  • [25] New Insights into the Volume Isotope Effect of Ice Ih from Polarizable Many-Body Potentials
    Rash, Soroush
    Jonsson, Elvar Orn
    Jonsson, Hannes
    Meyer, Jorg
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (50): : 11831 - 11836
  • [26] MANY-BODY THEORY OF ELECTRONIC EXCITATIONS IN RANDOM SUBSTITUTIONAL ALLOYS .1. FORMALISM
    VIGNALE, G
    HANKE, W
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 69 (2-3): : 193 - 207
  • [27] Insights on the capabilities and improvement ability of classical many-body potentials: Application to α-zirconium
    Del Masto, Alessandra
    Baccou, Jean
    Treglia, Guy
    Ribeiro, Fabienne
    Varvenne, Celine
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 231
  • [28] Ab initio many-body treatment of the electronic structure of metals
    O. Peschel
    I. Schnell
    G. Czycholl
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 47 : 369 - 378
  • [29] Toward reduced scaling many-body electronic structure at exascale
    Valeev, Edward
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [30] Ab initio many-body treatment of the electronic structure of metals
    Peschel, O. t
    Czycholl, G.
    Schnell, I.
    PHYSICA B-CONDENSED MATTER, 2006, 378-80 : 290 - 291