A Generalized Class of Univalent Harmonic Functions Associated with a Multiplier Transformation

被引:1
作者
Khurana, Deepali [1 ,2 ]
Kumar, Raj [3 ]
Verma, Sarika [3 ]
Murugusundaramoorthy, Gangadharan [4 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal, Punjab, India
[2] Hans Raj Mahila Maha Vidyalya, Dept Math, Jalandhar 144001, Punjab, India
[3] DAV Univ, Dept Math, Jalandhar 144001, Punjab, India
[4] Vellore Inst Technol Deemed Univ, Sch Adv Sci, Vellore 632014, Tamil Nadu, India
来源
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS | 2021年 / 18卷 / 03期
关键词
Harmonic mapping; Convolution; Bernardi operator; Coefficient conditions; Extreme points;
D O I
10.22130/scma.2021.132155.841
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new subclass of univalent harmonic mappings using multiplier transformation and investigate various properties like necessary and sufficient conditions, extreme points, starlikeness, radius of convexity. We prove that the class is closed under harmonic convolutions and convex combinations. Finally, we show that this class is invariant under Bernandi-Libera-Livingston integral for harmonic functions.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 10 条
[1]   A New Subclass of Salagean-Type Harmonic Univalent Functions [J].
Al-Shaqsi, Khalifa ;
Darus, Maslina ;
Fadipe-Joseph, Olubunmi Abidemi .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[2]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[3]  
Jahangiri J.M., 2002, Southwest J. Pure Appl. Math, V2, P77
[4]   Harmonic functions starlike in the unit disk [J].
Jahangiri, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (02) :470-477
[5]  
Kumar R, 2012, REV ROUM MATH PURES, V57, P371
[6]  
Lewy H., 1936, B AM MATH SOC, V42, P689
[7]  
Opoola T. O., 1994, MATH CLUJ, V36, P195
[8]  
SALAGEAN GS, 1983, LECT NOTES MATH, V1013, P362
[9]   Harmonic univalent functions with negative coefficients [J].
Silverman, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 220 (01) :283-289
[10]  
Yalcin E. YasarandS., 2011, TAMSUI OXFORD J INFO, V27, P269