Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients

被引:17
作者
Chenlemuge, Tselmeg [1 ]
Dulamsuren, Choimaa [1 ]
Hertel, Dietrich [1 ]
Schuldt, Bernhard [1 ]
Leuschner, Christoph [1 ]
Hauck, Markus [1 ]
机构
[1] Univ Gottingen, Albrecht Von Haller Inst Plant Sci, Plant Ecol, D-37073 Gottingen, Germany
来源
ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY | 2015年 / 63卷
关键词
Hydraulic architecture; Xylem anatomy; Tree-ring width; Fine root mass; Stem density; Coarse roots; SCOTS PINE; XYLEM EMBOLISM; DROUGHT; BIOMASS; GROWTH; CARBON; CLIMATE; TREES; STAND; CONDUCTIVITY;
D O I
10.1016/j.actao.2014.11.008
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
At its southernmost distribution limit in Inner Asia, the boreal forest disintegrates into forest fragments on moist sites (e.g. north-facing slopes), which are embedded in grasslands. This landscape mosaic is characterized by a much higher forest edge-to-interior ratio than in closed boreal forests. Earlier work in the forest-steppe ecotone of Mongolia has shown that Larix sibirica trees at forest edges grow faster than in the forest interior, as the more xeric environment at the edge promotes self-thinning and edges are preferentially targeted by selective logging and livestock grazing. Lowered stand density reduces competition for water in these semi-arid forests, where productivity is usually limited by summer drought. We studied how branch and coarse root hydraulic architecture and xylem conductivity, fine root biomass and necromass, and fine root morphology of L. sibirica respond to sites differing in water availability. Studying forest edge-interior gradients in two regions of western Mongolia, we found a significant reduction of branch theoretical (K-p) and empirical conductivity (K-s) in the putatively more drought-affected forest interior in the Mongolian Altai (mean precipitation: 120 mm yr(-1)), while no branch xylem modification occurred in the moister Khangai Mountains (215 mm yr(-1)). K-p and K-s were several times larger in roots than in branches, but root hydraulics were not influenced by stand density or mean annual precipitation. Very low fine root biomass: necromass ratios at all sites, and in the forest interior in particular, suggest that L. sibirica seeks to maintain a relatively high root conductivity by producing large conduits, which results in high root mortality due to embolism during drought. Our results suggest that L. sibirica is adapted to the semi-arid climate at its southernmost distribution limit by considerable plasticity of the branch hydraulic system and a small but apparently dynamic fine root system. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 67 条
[1]   Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought [J].
Adams, Henry D. ;
Guardiola-Claramonte, Maite ;
Barron-Gafford, Greg A. ;
Villegas, Juan Camilo ;
Breshears, David D. ;
Zou, Chris B. ;
Troch, Peter A. ;
Huxman, Travis E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (17) :7063-7066
[2]   The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off [J].
Anderegg, William R. L. ;
Berry, Joseph A. ;
Smith, Duncan D. ;
Sperry, John S. ;
Anderegg, Leander D. L. ;
Field, Christopher B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (01) :233-237
[3]   Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges [J].
Bouma, TJ ;
Yanai, RD ;
Elkin, AD ;
Hartmond, U ;
Flores-Alva, DE ;
Eissenstat, DM .
NEW PHYTOLOGIST, 2001, 150 (03) :685-695
[4]  
Breckle SW., 1994, SPEZIELLE OKOLOGIE G
[5]   Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants [J].
Brodersen, Craig R. ;
McElrone, Andrew J. .
FRONTIERS IN PLANT SCIENCE, 2013, 4
[6]   Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers [J].
Brodribb, Tim J. ;
Cochard, Herve .
PLANT PHYSIOLOGY, 2009, 149 (01) :575-584
[7]  
Cheng Y., 2006, Frontiers of Biology in China, V1, P310
[8]  
Chenlemuge T., 2015, TREES
[9]   Extremely low fine root biomass in Larix sibirica forests at the southern drought limit of the boreal forest [J].
Chenlemuge, Tselmeg ;
Hertel, Dietrich ;
Dulamsuren, Choimaa ;
Khishigjargal, Mookhor ;
Leuschner, Christoph ;
Hauck, Markus .
FLORA, 2013, 208 (8-9) :488-496
[10]   Global convergence in the vulnerability of forests to drought [J].
Choat, Brendan ;
Jansen, Steven ;
Brodribb, Tim J. ;
Cochard, Herve ;
Delzon, Sylvain ;
Bhaskar, Radika ;
Bucci, Sandra J. ;
Feild, Taylor S. ;
Gleason, Sean M. ;
Hacke, Uwe G. ;
Jacobsen, Anna L. ;
Lens, Frederic ;
Maherali, Hafiz ;
Martinez-Vilalta, Jordi ;
Mayr, Stefan ;
Mencuccini, Maurizio ;
Mitchell, Patrick J. ;
Nardini, Andrea ;
Pittermann, Jarmila ;
Pratt, R. Brandon ;
Sperry, John S. ;
Westoby, Mark ;
Wright, Ian J. ;
Zanne, Amy E. .
NATURE, 2012, 491 (7426) :752-+