Human Action Recognition Using a Semantic-Probabilistic Network

被引:0
|
作者
Kovalenko, Mykyta [1 ]
Antoshchuk, Svetlana [1 ]
Sieck, Juergen [2 ]
机构
[1] Odessa Natl Polytech Univ, Odessa, Ukraine
[2] Univ Appl Sci Berlin HTW, Berlin, Germany
来源
2015 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN NETWORKS AND COMPUTER COMMUNICATIONS (ETNCC) | 2015年
关键词
ontology; Bayesian network; event recognition; gesture recognition; human actions; surveillance systems; semantic-probabilistic network;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a semantic-probabilistic network to recognise human actions. We use a predefined domain ontology to describe the events and scenarios in the scene as a hierarchical decomposition of simple concepts and variables and then perform an automated conversion of the ontology into a Bayesian network. A novel approach for Bayesian network nodes' weights calculation is introduced based on the weighted relation between concepts of the ontology in order to reduce the influence of incorrect object detection. We then evaluate the performance of our approach using it to predict gestures in a human gesture recognition system, using a set of pre-recorded video sequences.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [1] Event Recognition Using a Semantic-Probabilistic Network
    Kovalenko, Mykyta
    Antoshchuk, Svetlana
    Hodovychenko, Mykola
    PROCEEDINGS OF 2015 INFORMATION TECHNOLOGIES IN INNOVATION BUSINESS CONFERENCE (ITIB), 2015, : 35 - 38
  • [2] Real-Time Hand Tracking and Gesture Recognition Using Semantic-Probabilistic Network
    Kovalenko, Mykyta
    Antoshchuk, Svetlana
    Sieck, Juergen
    2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2014, : 269 - 274
  • [3] Incremental EM for Probabilistic Latent Semantic Analysis on Human Action Recognition
    Xu, Jie
    Ye, Getian
    Wang, Yang
    Herman, Gunawan
    Zhang, Bang
    Yang, Jun
    AVSS: 2009 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 2009, : 55 - 60
  • [4] A Probabilistic Approach for Human Action Recognition using Motion Trajectories
    Chalamala, Srinivasa Rao
    Kumar, Prasanna A. L. P.
    2016 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION (ISMS), 2016, : 185 - 190
  • [5] An Iterative Classification Network for Semantic Action Recognition
    Zhou, Lijuan
    Chen, Junfu
    Qian, Xiaojie
    2021 THE 5TH INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, ICVIP 2021, 2021, : 32 - 37
  • [6] Action recognition using probabilistic parsing
    Bobick, AF
    Ivanov, YA
    1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1998, : 196 - 202
  • [7] Semantic Image Networks for Human Action Recognition
    Khowaja, Sunder Ali
    Lee, Seok-Lyong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) : 393 - 419
  • [8] Semantic Image Networks for Human Action Recognition
    Sunder Ali Khowaja
    Seok-Lyong Lee
    International Journal of Computer Vision, 2020, 128 : 393 - 419
  • [9] SAGN: Semantic Adaptive Graph Network for Skeleton-Based Human Action Recognition
    Fu, Ziwang
    Liu, Feng
    Zhang, Jiahao
    Wang, Hanyang
    Yang, Chengyi
    Xu, Qing
    Qi, Jiayin
    Fu, Xiangling
    Zhou, Aimin
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21), 2021, : 110 - 117
  • [10] Human action recognition using a modified convolutional neural network
    Kim, Ho-Joon
    Lee, Joseph S.
    Yang, Hyun-Seung
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 715 - +