Viscosity solutions of general viscous Hamilton-Jacobi equations

被引:36
作者
Armstrong, Scott N. [1 ]
Tran, Hung V. [2 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris, France
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; ELLIPTIC-EQUATIONS; STATE CONSTRAINTS; QUADRATIC GROWTH;
D O I
10.1007/s00208-014-1088-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present comparison principles, Lipschitz estimates and study state constraints problems for degenerate, second-order Hamilton-Jacobi equations.
引用
收藏
页码:647 / 687
页数:41
相关论文
共 19 条
[1]  
Armstrong S.N., ARXIV13101749MATHAP
[2]  
Armstrong S.N., COMM PARTIA IN PRESS
[3]   Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments [J].
Armstrong, Scott N. ;
Souganidis, Panagiotis E. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (05) :460-504
[4]   On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations [J].
Barles, G ;
Da Lio, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :53-75
[5]   Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods [J].
Barles, G ;
Biton, S ;
Bourgoing, M ;
Ley, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (02) :159-179
[6]  
Barles G., 1991, DIFFERENTIAL INTEGRA, V4, P241
[7]  
BARLES G, 1987, ESAIM-MATH MODEL NUM, V21, P557
[8]   The generalisation of Dirichlet's problem [J].
Bernstein, S .
MATHEMATISCHE ANNALEN, 1910, 69 :82-136
[9]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[10]   Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications [J].
Da Lio, F ;
Ley, O .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (01) :74-106