FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS

被引:23
作者
Tafazoli, Sara [1 ]
Moradi, Hamid Reza [2 ]
Furuichi, Shigeru [3 ]
Harikrishnan, Panackal [4 ]
机构
[1] Islamic Azad Univ, Dept Math, Hormoz Branch, Hormoz Isl, Iran
[2] PNU, Dept Math, POB 19395-4697, Tehran, Iran
[3] Nihon Univ, Dept Informat Sci, Coll Humanities & Sci, Setagaya Ku, 3-25-40 Sakurajyousui, Tokyo 1568550, Japan
[4] Manipal Acad Higher Educ, Dept Math, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 04期
关键词
Operator inequality; norm inequality; numerical radius; convex function; f; -; connection; weighted arithmetic-geometric mean inequality;
D O I
10.7153/jmi-2019-13-68
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present some new inequalities for numerical radius of Hilbert space operators via convex functions. Our results generalize and improve earlier results by E1-Haddad and Kittaneh. Among several results, we show that if A is an element of B (H) and r >= 2 , then w(r) (A) <= parallel to A parallel to(r) - inf(parallel to x parallel to = 1) parallel to vertical bar vertical bar A vertical bar - w (A) vertical bar (r/2) x parallel to(2) where w ( . ) d parallel to.parallel to denote the numerical radius and usual operator norm, respectively.
引用
收藏
页码:955 / 967
页数:13
相关论文
共 50 条
[41]   Novel p-numerical radius inequalities for Hilbert space operators [J].
Ahlem Benmakhlouf ;
Abdelkader Frakis ;
Fuad Kittaneh ;
Abdelaziz Mennouni .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (3)
[42]   SHARP INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS AND OPERATOR MATRICES [J].
Bhunia, Pintu ;
Paul, Kallol ;
Nayak, Raj Kumar .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (01) :167-183
[43]   Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators [J].
Kais Feki ;
Fuad Kittaneh .
Mediterranean Journal of Mathematics, 2022, 19
[44]   Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators [J].
Feki, Kais ;
Kittaneh, Fuad .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
[45]   Some new refinements of numerical radius inequalities for Hilbert and semi-Hilbert space operators [J].
Taki, Zakaria ;
Kaadoud, Mohamed Chraibi .
FILOMAT, 2023, 37 (20) :6925-6947
[46]   AN ALTERNATIVE ESTIMATE FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS [J].
Hosseini, Mohsen Shah ;
Moosavi, Baharak ;
Moradi, Hamid Reza .
MATHEMATICA SLOVACA, 2020, 70 (01) :233-237
[47]   Upper bounds for the numerical radius of Hilbert space operators [J].
Akram Mansoori ;
Mohsen Erfanian Omidvar ;
Khalid Shebrawi .
Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 :1473-1481
[48]   Upper bounds for the numerical radius of Hilbert space operators [J].
Mansoori, Akram ;
Omidvar, Mohsen Erfanian ;
Shebrawi, Khalid .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) :1473-1481
[49]   Upper Bounds for the Numerical Radius of Hilbert Space Operators [J].
Jaafari, Elahe ;
Asgari, Mohammad Sadegh ;
Hosseini, Mohsen Shah ;
Moosavi, Baharak .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) :237-245
[50]   Generalized numerical radius inequalities of operators in Hilbert spaces [J].
Kais Feki .
Advances in Operator Theory, 2021, 6