FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS

被引:23
作者
Tafazoli, Sara [1 ]
Moradi, Hamid Reza [2 ]
Furuichi, Shigeru [3 ]
Harikrishnan, Panackal [4 ]
机构
[1] Islamic Azad Univ, Dept Math, Hormoz Branch, Hormoz Isl, Iran
[2] PNU, Dept Math, POB 19395-4697, Tehran, Iran
[3] Nihon Univ, Dept Informat Sci, Coll Humanities & Sci, Setagaya Ku, 3-25-40 Sakurajyousui, Tokyo 1568550, Japan
[4] Manipal Acad Higher Educ, Dept Math, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 04期
关键词
Operator inequality; norm inequality; numerical radius; convex function; f; -; connection; weighted arithmetic-geometric mean inequality;
D O I
10.7153/jmi-2019-13-68
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present some new inequalities for numerical radius of Hilbert space operators via convex functions. Our results generalize and improve earlier results by E1-Haddad and Kittaneh. Among several results, we show that if A is an element of B (H) and r >= 2 , then w(r) (A) <= parallel to A parallel to(r) - inf(parallel to x parallel to = 1) parallel to vertical bar vertical bar A vertical bar - w (A) vertical bar (r/2) x parallel to(2) where w ( . ) d parallel to.parallel to denote the numerical radius and usual operator norm, respectively.
引用
收藏
页码:955 / 967
页数:13
相关论文
共 50 条
[31]   SOME GENERALIZED NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS [J].
Rashid, M. H. M. ;
Altaweel, N. H. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02) :541-560
[32]   Some generalized numerical radius inequalities for Hilbert space operators [J].
Sattari, Mostafa ;
Moslehian, Mohammad Sal ;
Yamazaki, Takeaki .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 :216-227
[33]   GENERAL NUMERICAL RADIUS INEQUALITIES FOR MATRICES OF HILBERT SPACE OPERATORS [J].
Al-Dolat, Mohammed ;
Al-Zoubi, Khaldoun .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (04) :1365-1373
[34]   Some generalizations of numerical radius inequalities for Hilbert space operators [J].
Yang, Chaojun .
SCIENCEASIA, 2021, 47 (03) :382-387
[35]   Refinement of numerical radius inequalities of complex Hilbert space operators [J].
Pintu Bhunia ;
Kallol Paul .
Acta Scientiarum Mathematicarum, 2023, 89 :427-436
[36]   SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS [J].
Feki, Kais .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) :1385-1405
[37]   SOME IMPROVEMENTS ABOUT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS [J].
Yang, Changsen ;
Li, Dan .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (01) :219-234
[38]   Novel p-numerical radius inequalities for Hilbert space operators [J].
Ahlem Benmakhlouf ;
Abdelkader Frakis ;
Fuad Kittaneh ;
Abdelaziz Mennouni .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (3)
[39]   SHARP INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS AND OPERATOR MATRICES [J].
Bhunia, Pintu ;
Paul, Kallol ;
Nayak, Raj Kumar .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (01) :167-183
[40]   Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators [J].
Kais Feki ;
Fuad Kittaneh .
Mediterranean Journal of Mathematics, 2022, 19