FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS

被引:23
作者
Tafazoli, Sara [1 ]
Moradi, Hamid Reza [2 ]
Furuichi, Shigeru [3 ]
Harikrishnan, Panackal [4 ]
机构
[1] Islamic Azad Univ, Dept Math, Hormoz Branch, Hormoz Isl, Iran
[2] PNU, Dept Math, POB 19395-4697, Tehran, Iran
[3] Nihon Univ, Dept Informat Sci, Coll Humanities & Sci, Setagaya Ku, 3-25-40 Sakurajyousui, Tokyo 1568550, Japan
[4] Manipal Acad Higher Educ, Dept Math, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 04期
关键词
Operator inequality; norm inequality; numerical radius; convex function; f; -; connection; weighted arithmetic-geometric mean inequality;
D O I
10.7153/jmi-2019-13-68
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present some new inequalities for numerical radius of Hilbert space operators via convex functions. Our results generalize and improve earlier results by E1-Haddad and Kittaneh. Among several results, we show that if A is an element of B (H) and r >= 2 , then w(r) (A) <= parallel to A parallel to(r) - inf(parallel to x parallel to = 1) parallel to vertical bar vertical bar A vertical bar - w (A) vertical bar (r/2) x parallel to(2) where w ( . ) d parallel to.parallel to denote the numerical radius and usual operator norm, respectively.
引用
收藏
页码:955 / 967
页数:13
相关论文
共 50 条
  • [21] REFINING NUMERICAL RADIUS INEQUALITIES OF HILBERT SPACE OPERATORS
    Khorasani, Mohammad Ali Shiran
    Heydarbeygi, Zahra
    MATEMATICKI VESNIK, 2023, 75 (01): : 50 - 57
  • [22] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR OPERATORS IN HILBERT C*-MODULES SPACE
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01) : 77 - 84
  • [23] Some inequalities for the numerical radius for Hilbert C*-modules space operators
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    Moosavi, Baharak
    Moradi, Hamid Reza
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) : 255 - 260
  • [24] SOME NEW NUMERICAL RADIUS AND HILBERT-SCHMIDT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Yang, Chaojun
    Xu, Minghua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 269 - 282
  • [25] Refinements of some numerical radius inequalities for Hilbert space operators
    Rashid, Mohammad H. M.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (02): : 155 - 173
  • [26] Refinement of numerical radius inequalities of complex Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4): : 427 - 436
  • [27] Numerical Radius Inequalities for Products of Hilbert Space Operators II
    Abu-Omar, Amer
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (02) : 127 - 133
  • [28] Refinements of some numerical radius inequalities for Hilbert space operators
    Jena, Mamata Rani
    Das, Namita
    Sahoo, Satyajit
    FILOMAT, 2023, 37 (10) : 3043 - 3051
  • [29] NUMERICAL RADIUS INEQUALITIES FOR THE WEIGHTED SUMS OF HILBERT SPACE OPERATORS
    Pang, Songyue
    Liang, Yuxia
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2025, 19 (01): : 307 - 331
  • [30] Refinement of numerical radius inequalities of complex Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    Acta Scientiarum Mathematicarum, 2023, 89 : 427 - 436