FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS

被引:23
作者
Tafazoli, Sara [1 ]
Moradi, Hamid Reza [2 ]
Furuichi, Shigeru [3 ]
Harikrishnan, Panackal [4 ]
机构
[1] Islamic Azad Univ, Dept Math, Hormoz Branch, Hormoz Isl, Iran
[2] PNU, Dept Math, POB 19395-4697, Tehran, Iran
[3] Nihon Univ, Dept Informat Sci, Coll Humanities & Sci, Setagaya Ku, 3-25-40 Sakurajyousui, Tokyo 1568550, Japan
[4] Manipal Acad Higher Educ, Dept Math, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 04期
关键词
Operator inequality; norm inequality; numerical radius; convex function; f; -; connection; weighted arithmetic-geometric mean inequality;
D O I
10.7153/jmi-2019-13-68
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present some new inequalities for numerical radius of Hilbert space operators via convex functions. Our results generalize and improve earlier results by E1-Haddad and Kittaneh. Among several results, we show that if A is an element of B (H) and r >= 2 , then w(r) (A) <= parallel to A parallel to(r) - inf(parallel to x parallel to = 1) parallel to vertical bar vertical bar A vertical bar - w (A) vertical bar (r/2) x parallel to(2) where w ( . ) d parallel to.parallel to denote the numerical radius and usual operator norm, respectively.
引用
收藏
页码:955 / 967
页数:13
相关论文
共 50 条
[21]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
ARCHIV DER MATHEMATIK, 2021, 117 (05) :537-546
[22]   Some Inequalities for the Numerical Radius of Hilbert Space Operators [J].
Gao, Fugen ;
Hu, Yijuan .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
[23]   REFINED INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS [J].
Bhunia, Pintu ;
Jana, Suvendu ;
Paul, Kallol .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2025, 55 (02) :323-332
[24]   SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR OPERATORS IN HILBERT C*-MODULES SPACE [J].
Moosavi, Baharak ;
Hosseini, Mohsen Shah .
JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01) :77-84
[25]   Some inequalities for the numerical radius for Hilbert C*-modules space operators [J].
Hosseini, Mohsen Shah ;
Omidvar, Mohsen Erfanian ;
Moosavi, Baharak ;
Moradi, Hamid Reza .
GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) :255-260
[26]   SOME NEW NUMERICAL RADIUS AND HILBERT-SCHMIDT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS [J].
Yang, Chaojun ;
Xu, Minghua .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01) :269-282
[27]   Refinement of numerical radius inequalities of complex Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4) :427-436
[28]   Refinements of some numerical radius inequalities for Hilbert space operators [J].
Rashid, Mohammad H. M. .
TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (02) :155-173
[29]   Refinements of some numerical radius inequalities for Hilbert space operators [J].
Jena, Mamata Rani ;
Das, Namita ;
Sahoo, Satyajit .
FILOMAT, 2023, 37 (10) :3043-3051
[30]   Numerical Radius Inequalities for Products of Hilbert Space Operators II [J].
Abu-Omar, Amer .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (02) :127-133